
PLANNING COLLISION FREE PATHS
FOR TWO COOPERATING ROBOTS

USING A DIVIDE-AND-CONQUER
C-SPACETRAVERSAL HEURISTIC

by

Iohnathan M. Weaver

Rensselaer Polytechnic Institute

Mechanical Engineering Department

Troy, New York 12180-3590

May 1993

CIRSSE REPORT #136

CONTENTS

LIST OF TABLES vi

LIST OF FIGURES vii

ACKNOWLEDGEMENT ix

Abstract x

1. 1

1.1 1

1.2 5

5

6

6

8

1.3 Overview of Thesis 9

Review II

Planning for Single Robots 11

The Graph Search Approach 12

The Potential Fields Approach 22

2.1.3 The Human Assisted Approach 26

2.2 Path Planning for Cooperating Robots 28

2.3 Other Related Areas of Research 32

2.3.1 Mobile Robot Path Planning 32

2.3.2 Coordination of Multiple Robots 33

2.3.3 Piano Mover's Problem 33

2.3.4 Nonholonomic Motion Planning 34

2.4 Summary of the Literature Review 34

Introduction

Motivation

Direction of this Work

1.2.1 Assumptions

1.2.2 Goals

1.2.3 Strategy

1.2.4 Results

2. Literature

2.1 Path

2.1.1

2.1.2

2.4.1

2.4.2

2.4.3

2.4.4

Difficulties With Complete Solutions 35

Practical Incomplete Solutions 35

Potential Fields Solutions 36

Cooperating Robots 36

ii

3. Statement of the Problem 37

3.1 Background 37

3.2 Assumptions................................ 38

3.3 Goals 43

3.4 SingleRobot Path PlanningProblem Statement 44

3.5 CooperatingRobot Path Planning Problem Statement 45

4. Divide-and-ConquerC-SpaceTraversalHeuristic 47

4.1 Motivation for a New Approach 47

4.2 Conceptual Description of Heuristic 50

4.2.1 More 2D Examples 54

4.2.2 A 3D example 55

4.2.3 Philosophy Behind the Heuristic 55

4.3 Vector Description of Heuristic 58
4.3.1 Failure Condition 60

4.4 Computing Search Directions 62

4.4.1 Selecting a Procedure 67

4.5 Prioritizing Search Directions 68

4.6 Comparison of the Heuristic to the Literature 70

5. Utilizing the Heuristic for Robot Path Planning 73

5.1 Single Robot Path Planning 73

5.1.1 Handling Robots with Mixed Joint Types 74

5.1.2 Joint Limit Problems 75

5.1.3 Choosing _ 75

5.1.4 Choosing Number of Bins 75

5.1.5 Multiple Robot Configurations 76

5.1.6 Singularity Concerns 76

5.2 Cooperating Robot Path Planning 76

5.3

5.2.1

5.2.2

5.2.3

5.2.4

String

Choosing a Lead Robot 77

Handling Cooperating Redundant Robots 79

Multiple Robot Configurations 82

Singularity Concerns 82

Tightening 83

°..

111

5.3.1 History of Smoothing 83

5.3.2 String Tightening Algorithm 84

5.3.3 Comparison to Other Path Smoothing Approaches 88

5.4 Handling Constrained Motions 88

6. Implementation and Results 89

6.1 Characteristics Common to All Implementations 89

6.1.1 Heuristic is Applied Generically 90

6.1.2 Geometric Modeling with Polytopes 90

6.1.3 Hierarchical Interference Detection 90

6.1.4 Animation of Paths 92

6.1.5 Description of Programs 93

6.2 CIRSSE Testbed 95

6.2.1 Single Puma 560 96

6.2.2 Single 9 DOF Robot 100

6.2.3 Cooperating Puma 560's 102

6.2.4 Cooperating 9 DOF Robots 106

6.2.5 Effect of String Tightening 110

6.3 NASA Langley's Automated Structure Assembly Lab 111

6.4 Cooperating Pumas Assemble a Truss 113

7. Discussion of the Path Planning Strategy 117

7.1 Completeness 117

7.2 Computational Complexity 118

7.2.1 Possible Benefits of Parallel Processing 119

7.3 Overall Effectiveness 120

8. Conclusions and Future Work 121

8.1 Conclusions 121

8.1.1 Advantages 122

8.1.2 Disadvantages 123

8.2 Future Work 124

8.2.1 Improvement to String Tightening Process 124

8.2.2 Integration with the CIRSSE Geometric State Manager 125

iv

8.2.3 Utilization of Parallel Processing 125

8.2.4 Guaranteeing Completeness 125

8.2.5 Decidability 126

LITERATURE CITED 127

APPENDICES 136

A. CIRSSE Testbed Kinematic Frames 136

A.1 Coordinate Frames " 136

A.2

A.3

B. Data

B.I

B.2

B.3

A.I.1 Assignment/Labeling of Frames 136

Software Joint Limits for the PUMAs 140

Pose Names 142

for Examples Presented in Thesis 146

Data for Examples 1 and 2 146

Data for Example 3 147

Data for Example 4 148

V

LIST OF TABLES

Table 2.1

Table 2.2

Table 6.1

Single Robot vs Cooperating Robot Path Planning 28

Mobile Robot vs Manipulator Path Planning 33

Summary of Results for CIRSSE Testbed Examples (times in

seconds) "..................... 97

vi

LIST OF FIGURES

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1.1 Two 9-DOF Robots Working Cooperatively 2

1.2 The CIRSSE Testbed 4

2.1 A 2D Planar Robot and its Configuration Space 13

2.2 Exhaustive Mapping of Concavities Using A* Heuristic 14

2.3 Goal Directed Sliding 17

2.4 Vector Based Divide-and-Conquer 20

2.5 Hypercube Subdivision Algorithm 31

3.1 Choice of Goal Joint Angles May Affect Solvability 40

4.1 2D Example of C-Space Traversal Heuristic 52

4.2 Example Which Dismisses an Intermediate Point 55

4.3 Scenario Which Would Result in Non-Disjoint C-Space 56

4.4 Example with Non-Disjoint Safe Space and Multiple Searches 57

4.5 3D Example of C-Space Traversal Heuristic 57

4.6 2D Example for which Heuristic Fails by Cycling 61

4.7 Procedure 3 vs Procedure 4 68

5.1 Local Effect During String Tightening 86

5.2 String Tightening May Not Produce Optimal Path 87

6.1 Some 2D Polytopes 91

6.2 Flowchart of Path Planning Program 94

6.3 Sample Results for Single Puma (Example 1) 98

6.4 Start Configuration for Example 1 99

6.5 Trace of Payload Path for Example 1 99

6.6 Sample Results for Single 9 DOF Robot (Example 2) 101

vii

Figure 6.7

Figure 6.8

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Sample Results for Cooperating Pumas (Example 3) 104

Start Configuration for Example 3 105

6.9 Goal Configuration for Example 3 105

6.10 Sample Results for Cooperating 9 DOF (Example 4) 108

6.11 Start Configuration for Example 4 109

6.12 Goal Configuration for Example 4 109

6.13 String Tightening a Path for Cooperating Nine DOF Robots . 110

6.14 NASA Langley's Automated Structure Assembly Lab 114

6.15 6 DOF Merlin Robot with End Effectorfor Truss Assembly .115

6.16 102 Strut Truss Structure 115

6.17 Workcell for Cooperating Pumas Assembling Truss 116

A.I Coordinate Frame Assignments 144

A.2 Left Half Coordinate Frame Assignments 145

,.o

V111

ACKNOWLEDGEMENT

My thanks to my advisor, Dr. Stephen Derby, who granted me much independence

while keeping me from going astray. I also wish to thank my doctoral committc_

members, Drs. Warren DeVries, Gary Gabriele, and Arthur Sanderson for their

advice and assistance.

Special thanks to Glenn Friedman for extensive assistance on this work inc]ud-

ing hours of assistance on figure making. Were it not for Glenn's help I could still

be searching for a viable approach. Thanks also to Joe Musto, Sanjeev Seereeram,

and the others on the 8 th floor for their help and for making hours spent in the Lab

more enjoyable.

Most of all, many thanks to my parents for both their encouragement and their

financial assistance. Their assistance enabled my time at RPI to be both enjoyable

and worry free.

Finally, I would like to aknowledge the Center for Intelligent Robotic Systems

for Space Exploration at RPI for their financial support of this research and for the

use of their equipment.

ix

Abstract

A method has been developed to plan feasible and obstacle-avoiding paths for

two spatial robots working cooperatively in a known static environment. Cooperat-

ing spatial robots as referred to herein are robots which work in 6D task space while

simultaneously grasping and manipulating a common, rigid payload. The approach

is configuration space (c-space) based and performs selective rather than exhaustive

c-space mapping. No expensive precomputations are required. A novel, divide-

and-conquer type of heuristic is used to guide the selective mapping process. The

heuristic does not involve any robot, environment, or task specific assumptions. A

technique has also been developed which enables solution of the cooperating redun-

dant robot path planning problem without requiring the use of inverse kinematics

for a redundant robot.

The path planning strategy involves first attempting to traverse along the

configuration space vector from the start point towards the goal point. If an un-

sage region is encountered, an intermediate via point is identified by conducting a

systematic search in the hyperplane orthogonal to and bisecting the unsafe region

of the vector. This process is repeatedly applied until a solution to the global path

planning problem is obtained. The basic concept behind this strategy is that better

local decisions at the beginning of the trouble region may be made if a possible way

around the "center" of the trouble region is known. Thus, rather than attempting

paths which look promising locally (at the beginning of a trouble region) but which

may not yield overall results, the heuristic attempts local strategies that appear

promising for circumventing the unsafe region.

Although this method cannot guarantee finding a solution even if one exists,

and in spite of its O(k n-l) (where k = 2 or 3 as implemented) complexity for

n degree of freedom problems, it has demonstrated the ability to solve a variety of

practical yet potentially difficult path planning problems within a reasonable amount

m"

of computation. The method inherently handles singularities and is applicable to

robots having any number and type of joints. Parallel processing could be used to

greatly reduce solution time.

Because the main emphasis of the path planning method is to produce a fea-

sible path without regard to any type of optimality, the paths developed are often

rather inefficient. Thus, a configuration space based algorithm was developed to

modify any feasible path found by the planner into a more efficient one, where

efficiency is measured by the length of the c-space trajectories.

Although the key motivation behind this work was to address the path plan-

ning problem for two cooperating robots, the methods developed are directly appli-

cable to single robots as well. The path planner is implemented in C and utilizes

polyt'ope models of the robots and obstacles for purposes of interference detection.

The path planner is demonstrated via computer graphics simulation on a Sun Sparc-

Station 1 for several single and cooperating robot cases, including cooperating nine

degree of freedom (IP-SP_) robots.

xi

CHAPTER 1

Introduction

1.1 Motivation

Robotics is a technology with a promising future. The explosion of knowledge

resulting from past and present research efforts will manifest itself in robotic systems

capable of emulating the human attributes of mobility, dexterity, intelligence, and

sensory perception. There will be mobile bases with multiple cooperating arms

having extensive sensing capability which are able to receive high level instructions

and translate those instructions into a specific sequence of low level actions required

to execute the desired task. Robotic systems of the near future will strive for

increased flexibility, improved reliability, and greater autonomy.

One issue which arises in attempts to develop more autonomous robotic sys-

tems is the path planning problem. The path planning problem involves determining

if a continuous and obstacle avoiding path exists between a robot's start and goal

positions, and, if so, to determine such a path. If the mathematical space of concern

is considered to be the configuration space (c-space) of the robot, then the problem

is effectively that of finding a connected graph through c-space between the start

and goal positions which traverses only feasible and collision free points. This path

planning problem can become very computationally intensive. In fact, an upper

bound on the complexity of the n degree of freedom (dof) path planning problem is

O(nn), i.e., complexity of the path planning problem is exponential in the number

of dof [1-3]. To illustrate the rapid growth in complexity with number of dof, note

that a six dof problem would be more complex than a two dof problem by a factor

of 66 / 22, or 11,664.

A subset of the general path planning problem just described is the path

planning problemfor two cooperating robots. Robotic cooperation herein refers to

the scenario whereby both robots simultaneously grip and manipulate a common,

rigid, payload. Since the two arms grasp the object rigidly, the relative position

and orientation of the two grippers must be invariant during the motion. As an

example of two arm cooperation, refer to Figure 1.1, where two nine degree of

freedom robots are shown cooperatively manipulating a long, cylindrical payload.

Figure 1.I: Two 9-DOF Robots Working Cooperatively

The effective number of degrees of freedom or mobility, m, for two spatial robots

working cooperatively in six dimensional task space can be simply computed from:

rn=n 1 +n2-6 (1.1)

where n_ represents the number of degrees of freedom for robot i, and the '-6' term

results from the closure constraint imposed by cooperation.

There are many potential applications for two arm cooperation. For example,

a space station will most likely be built using robots to minimize the expense and

risk of putting humans into space. In order to be most effective, the robot arms

would likely cooperate and be autonomous or at least semi-autonomous. The at-

tractiveness of lightweight robots for space applications increases the likelihood that

robotic cooperation would be necessary to manipulate large or massive payloads.

In industry, robotic cooperation might be employed for moving very large or very

flexible payloads which exceed the capacity of a single arm or require support at

more than one point. Cooperating robots could also be used to manipulate two

parts with mating surfaces but which are not fastened to each other.

The addition of a second manipulator for cooperative work leads to an inher-

ently complex system. One key research issue and open problem associated with a

system of cooperating robots is the path planning problem. The cooperating robot

path planning problem must consider not only collision avoidance but also the kine-

matic closure requirement that both robots are able to reach their respective grasp

positions at all times. Dooley [4] shows how the closure constraint plus obstacle con-

straints for cooperating planar robots can combine to produce a configuration space

containing many unusually shaped unsafe regions and relatively little safe space.

One can conclude both intuitively and from Dooley's work that the path planning

problem in the cooperating robot case will typically be more difficult than in the

single robot case.

Numerous approaches to the general single arm path planning problem have

appeared in the literature. Most do not appear directly suited to the case of two

cooperating robot arms. Many of these approaches do, however, attempt to find a

path while applying some heuristic to selectively search configuration space. The

only practical planners to date for a general six degree of freedom (dof) robot in-

volve simplifications or heuristics and are not complete, i.e., they cannot guarantee

finding a solution even if one may exist. Many of the approaches in the literature

which do address path planning for cooperating robots consider only planar sys-

tems and cannot be practically extended to the case of two robots having six or

4

more dof each. Some researchers have solved the cooperating arm path planning

problem with multi-dof spatial (working in 6D task space) robots but they present

results only for relatively (or completely) obstacle-free environments. The difficulty

which researchers have experienced in trying to solve the general cooperating robot

path planning problem is evidence of the inherent complexity of the problem and

highlights the need for further study.

The work presented herein was funded by the Center for Intelligent Robotic

Systems for Space Exploration (CIRSSE), a NASA sponsored research center at

Rensselaer Polytechnic Institute (RPI), and is part of CIRSSE's efforts to develop

autonomous and teleoperated single and cooperating robot systems for use in space.

The CIRSSE testbed, a computer graphics representation of which is shown in Fig-

ure 1.2, includes two nine dof robots which may work independently or cooperatively.

Figure 1.2: The CIRSSE Testbed

5

Each nine dof robot consists of a 6 dof (6R) Puma 560 mounted to a 3 dof (1P-

2R) platform. As shown in the figure, each platform has a translate, a rotate, and

a tilt axis. The testbed has extensive sensing capabilities, including various CCD

cameras, laser range finding, and force/torque sensing end effectors. The principle

motivation for this work was the desire to develop a practical and potentially useful

path planner for cooperating robot scenarios on the CIRSSE testbed. Nonetheless,

the strategy herein is completely general and no assumptions are made which would

limit the usefulness of the approach to specific robots, environments, or tasks.

1.2 Direction of this Work

This section briefly summarizes the assumptions, goals, strategy, and results

of the work presented in this thesis.

1.2.1 Assumptions

This work assumes the following:

1. Forward kinematic models of the robots are available.

2. Inverse kinematic models of the robots are available for six dof robots or for

the final six links of redundant robots.

3. Geometric models of the robots, payload, and obstacles are available.

4. Obstacles in the workspace are static.

5. Feasible and collision free start and goal joint configurations of the robots are

known, as are the start and goal positions of the payload.

6. Motion between the specified start and goal positions may be arbitrary.

7. The planner may ignore robot dynamics.

1.2.2 Goals

The goalsof this work are to develop a planner capable of solving the cooper-

ating robot path planning problem while satisfying the following:

1. The planner shall locate reasonable collision-free paths in a time frame suitable

for off-line path planning.

2. The planner shall be capable of modifying a feasible path into a more efficient

one.

3. The planner shall be applicable to various robotic systems and various tasks.

4. The planner shall be practical for cooperating six dof manipulators as a min-

imum, and ideally for cooperating redundant robots.

5. The planner output shall be a sequential listing of closely spaced knot points

in joint space which represent the discretization of a continuous, feasible, and

obstacle avoiding path connecting the start and goal configurations.

1.2.3 Strategy

This thesis presents a new method for performing global path planning for

two cooperating spatial robots in a static environment. Like the single arm planner

presented by Dupont [5], the principle strategy is to minimize the computationally

expensive mapping of configuration space by performing mapping on an as required

basis. The planner satisfies the goals outlined in Subsection 1.2.2. The approach

is based around a novel, divide-and-conquer style heuristic for traversing through

c-space. This c-space traversal heuristic is directly applicable to the single robot path

planning problem and can be easily tailored to the case of two cooperating robots.

In all cases the dimensionality of the c-space considered is an accurate reflection of

the actual problem complexity. Computationally expensive precomputations and

7

exhaustive c-space mappings are avoided. This thesis also presents a technique

which allows the path planning method to be applied to cooperating redundant

robots without requiring the use of inverse kinematics for a redundant robot. The

path planning method is applicable regardless of the number and type of joints in

the robot and for any number of obstacles in the workspace. A string tightening

algorithm is presented to modify any safe path found by the planner into a more

efficient one, where efficiency is measured by the length of the joint space trajectory.

The path planning method involves first attempting to traverse a c-space vector

from the start to the goal of one of the robots. If this vector passes through unsafe

space, the hyperspace orthogonal to and bisecting the unsafe segment of the vector is

systematically searched to identify an intermediate goal point for consideration as a

via point. An attempt is made to traverse from the last safe point to the intermediate

goal point. This process is repeated as necessary until the attempted traversal to

the newest intermediate goal point is entirely safe. At that point, progression is

attempted toward all previous guide points in the opposite order in which they were

found, where guide points include not only previous intermediate goal points but

also the safe points found on the goal end of each unsafe region which invoked a

search. When progression to a particular guide point is not entirely safe, that point

is permanently dismissed and progression is attempted toward the next guide point

in the specified sequence. The progression continues until an attempt has been made

to progress to the global goal point. If that attempted progression is not entirely

successful the overall process is repeated until the global goal point has been safely

traversed to.

Unfortunately, the path planning method presented herein is not complete,

i.e., it cannot guarantee finding a solution even if one exists. Though certainly

undesirable, this lack of completeness does not seem unreasonable since researchers

have thus far been unable to develop algorithms which achieve both completeness

and practicality for reasonably difficult yet practical path planning problems for

more than a few degrees of freedom. Since our emphasis was toward achieving a

potentially useful path planner for cooperating robots with at least six dof each, we

sacrificed completeness in exchange for the possibility of solving some practical yet

potentially difficult problems as quickly as possible.

Unlike some path planning techniques which axe geometric model data struc-

ture specific, our planner may be used with any geometric modeling scheme which

allows for interference detection. Our implementation utilizes polytope representa-

tions of the links of the robots and of the obstacles in the workspace as presented by

Schima [6]. The polytope scheme was chosen because it allows for detailed modeling

of objects while enabling relatively fast interference checking. The potential speed

of the collision detection is enhanced by the fact that the method simply needs a yes

or a no regarding collisions and does not require distance or direction information.

Mapping a particular point in c-space involves verifying that the closure constraint

can be met, updating polytope models of the robot links and payload, and perform-

ing two phase interference detection calculations on the resulting polytopes. The

first phase of interference detection simply checks for interference between spheres

which bound each polytope. If the spheres intersect indicating possible collision

then the second phase of interference detection must be invoked. The second phase

accurately determines whether or not two polytope models intersect.

1.2.4 Results

Despite its simplicity, the methodology presented herein appears to solve the

cooperating robot path planning problem better than other approaches presented

in the literature. The method is also applicable to the single robot path planning

problem. The approach does, however, suffer from one drawback currently afflicting

all practical motion planners which can handle six or more dof, namely that it may

fail to find a solution evenif oneexists. An upper bound on the complexity of the

planner is O(k n-l) for an n dof problem, where k < n. For our implementation,

k = 3 for all cases except cooperating redundant manipulators for which k = 2. This

compares favorably to the actual problem complexity which has an upper bound of

O(nn).

Sample results are included for a single six dof robot, a single nine dof robot,

cooperating six dof robots, and cooperating nine dof robots. The results illus-

trate the planner's ability to solve practical yet potentially difficult problems. The

path planner was implemented in the C programming language and runs on a Sun

SparcStation 1. Paths found by the planner are animated using CimStation, a com-

mercially available computer graphics robot simulation package [7]. Typical time

required to find a feasible path for cooperating nine dof robots (the most complex

scenario considered) with several workspace obstacles is less than 30 minutes. After

finding a feasible path, the string tightening process for cooperating nine dof robots

typically requires about 15 minutes of computation. Parallel processing could be

used to significantly reduce execution times for both the path planning and string

tightening routines since both involve a large number of independent calculations.

1.3 Overview of Thesis

The remainder of this thesis is presented in seven main chapters:

• Literature Review

• Problem Statement

• Divide-and-Conquer C-Space Traversal Heuristic

• Utilizing the Heuristic for Robot Path Planning

• Implementation and Results

10

• Discussion of the Path Planning Strategy

• Conclusions and Future Work

A literature review on published techniques for single and cooperating robot

path planning is discussed in Chapter 2. The path planning problem is formally

defined in Chapter 3. Chapters 4 and 5 present the central contribution of this thesis,

namely a new c-space traversal heuristic aJad means for utilizing the heuristic to solve

single and cooperating robot path planning problems. In Chapter 6, implementation

details and results are presented for application of the path planning strategy with

string tightening to four cases: a single six dof robot, a single nine dof robot, two

cooperating six dof robots, and two cooperating nine dof robots. A discussion of

the path planning strategy is given in Chapter 7. Finally, Chapter 8 presents some

conclusions and some areas for future work.

CHAPTER 2

Literature Review

This chapter presents a literature review on the subject of robot path planning. The

chapter is organized into the following main sections:

• Path Planning for Single Robots

• Path Planning for Cooperating Robots

• Other Related Areas of Research

• Summary of the Literature Review

While we are specifically interested in path planning for cooperating robots,

an understanding of current methods for a single robot is pertinent to determining

the possible suitability of extending those methods to consider cooperating robots.

Hence, the discussion below includes methods for both single robots, presented in

Section 2.1, as well as for cooperating robots, presented in Section 2.2. Other re-

lated areas of path planning research are briefly discussed in Section 2.3. Finally,

a brief summary of the literature review is presented in Section 2.4. A brief re-

view of literature regarding algorithms for string tightening is presented later in

Section 5.3.1.

2.1 Path Planning for Single Robots

Published approaches to the single robot path planning problem are discussed

in this section. Most of these approaches can be characterized as one of the following

three types:

• A graph search approar.h

11

12

• A potentialfieldsapproach

• A human assisted approach

These categorizations are not mutually exclusive, and a combination of them is often

used in a path planning strategy. These approaches are discussed below.

2.1.1 The Graph Search Approach

One approach to solving the path planning problem could be referred to as the

graph search type approach. Such an approach will work directly in the configuration

space (c-space) in attempt to find a connectivity graph of safe points between an

initial configuration and a goal configuration [5,8-33].

Configuration space as first suggested by Lozano-Perez and Wesley [33] refers

to the n-dimensional space formed by the n values of the joint variables of a robot

with n degrees of freedom (dof). Thus, each possible configuration which the robot

can assume is represented by a point in the configuration space. The robot path

planning problem is thus equivalent to the motion planning problem of a point in

c-space. The concept of c-space is illustrated in Figure 2.1. Consider the 2R planar

manipulator shown in Figure 2.1a. If it is assumed that each joint has both upper

and lower limits then the resulting c-space is rectangular as shown in Figure 2.lb.

If there were no joint limits the resulting c-space would be toroidal.

C-space can be divided into two regions: safe and unsafe. Safe space refers to

the locus of all points in configuration space which represent feasible and collision

free configurations. All space which is not safe for any reason is simply categorized

as unsafe space.

A path planning technique is considered complete if it can either guarantee

finding a solution if one exists or prove that one does not exist. Early efforts at

developing complete graph search techniques indicate that path planning in this

fashion is exponential in the number of degrees of freedom. For example, Reif [1]

13

Car±eslan Space

_O,X

8a
join±

2

rain

ConFigura±ion Space

$

!

mln _I max
jo_n±

1

Figure 2.1: A 2D Planar Robot and its Configuration Space

examined the 3D generalized mover's problem. The mover's problem (often referred

to as the piano mover's problem) involves path planning for a single solid object.

The generalized mover's problem involves path planning for an object which may

consist of multiple objects kinematically linked together (such as a robot arm). The

fact that Reif could show this generalized problem is PSPACE-hard is evidence

that the computational bounds for robot motion planning problems in fact grow

exponentially with degrees of freedom. An explanation of PSPACE-hardness may

be found in [34]. An upper bound on complexity of the robot path planning problem

is O(n n) for an n dof robot [2, 3].

Most graph search techniques utilize global world knowledge. In addition,

many use an A* type of heuristic search to find a feasible path. The A* algorithm is

a common search procedure whereby paths to the goal are built and compared based

14

on a heuristic estimateof the cost remaining to reach the goal. The algorithm con-

tinually expands the most promising path until a solution is found. Unfortunately,

searching for the optimal path has led most researchers to transform all obstacles

into c-space [9,17-19,21-25,28,30,31]. Because of the higher order complexity of such

a technique, the more successful works involved simplifications to reduce problem

dimensionality [12, 17, 18, 26]. The basic shortcoming of the A* type searches is the

fact that they tend to exhaustively map out concavities encountered in trying to go

between the start and the goal. A 2D example of this phenomenon is illustrated in

Figure 2.2. The likely computational expense of such an approach makes it imprac-

tical for motion planning for robots with more than a few doff The A* algorithm

can also be applied bidirectionally by considering extending the path from both

the start and the goal positions. Bidirectional searching can be effective since it is

generally easier to move from a cluttered space to an open space than vice versa.

(a)

s't

(b) (c)

• 0 •

• 0 @ • o

_" -k°o
• o 0 • O

Ooll_ • o

(d)

O O @ • o Q

I Q e • O

0 O • o II

O • • o •

.-'k

Figure 2.2: Exhaustive Mapping of Concavities Using A* Heuristic

Other complete techniques which are not computationally practical for higher

degrees of freedom are presented by Branicky [35], Canny [131, and Paden [361.

Kondo [37] has reported a fast and complete algorithm for six dof robots, but the

algorithm's speed is only demonstrated for apparently simple problems.

Chert and Hwang [38] present a complete solution technique with performance

15

commensurate with task difficulty. Essentially, they use a global planner to select

regions of collision free space which connect the start and goal and then use a local

planner to solve the path planning problem within each region. The resolution of

the regions is only as fine as necessary to find a solution using a heuristic to select

promising regions for further subdivision. In this way, easy problems may be solved

relatively quickly and yet an extremely difficult problem may be resolved to whatever

level is required to obtain a solution or conclude one does not exist. Their algorithm

solves a relatively simple yet practical disassembly task for a five dof Adept robot

in three minutes on a 16 MIPS workstation.

Sharir [32] notes the mathematical complexity and size of the general com-

plete solution of robot motion planning in an n-dimensional c-space and presents a

graph search algorithm aimed at solving it. Sharir develops an algorithm which is

conceptually applicable to a system of arbitrary dimension. His algorithms can be

most easily described by considering the 2D problem of planning the movement of

a line segment in a planar space containing polygonal obstacles. The line segment

is free to translate but may not rotate. Sharir's algorithm groups the 2D c-space

into closed polygonal regions which are homogeneous (completely safe or unsafe).

Then the problem of motion planning becomes that of searching for a connectivity

graph between the initial and final positions in the polygon which contains those

points. While this approach is interesting and successful in 2D, Sharir acknowledges

that both the breaking down of regions in configuration space and the graph search

suffer from higher order explosion; to the point of intractability.

The mathematical complexity of the general motion planning problem has

resulted in many techniques which reduce the problem dimensionality via sim-

--plifications. Some such simplifications have included allowing only cartesian ma-

nipulators [24], requiring arm seperability (small wrists which orient a spherical

payload) [15,17,18,23,26,28,39-41], or allowing only certain motions and obstacle

16

types [12, 20, 26, 42]. Noneof theseconstraints can be used for path planning for

two cooperating robot arms.

Gupta [43] presents a sequential search strategy which plans the motion of

each robot link successively starting from the base. While not complete for robots

with three or more links, this technique is very efficient and may be useful for qulckly

solving some simple problems.

One technique which has been used for path planning in c-space involves hy-

pothesizing a path and then testing it at a finite number of intermediate points for

collisions. The path is repeatedly modified heuristically until a solution is found.

Lewis [44] suggested precomputing commonly used path segments referred to as

freeways and recommended the use of intermediate safe points to avoid detected

collisions. However, he presented no mechanism by which to determine these inter-

mediate safe points.

Pieper [45] applied various cartesian heuristics to attempt to bypass obstacles.

The arm could fold to move in front of or above detected obstacles. Pieper found

that certain obstacle arrangements resulted in the manipulator oscillating between

obstacles. In addition, the algorithm generally failed if the only acceptable path led

between two obstacles.

Glavina [46] presents a heuristic path planning method which combines goal-

directed searches with randomized searches as needed. The algorithm proceeds

straight in c-space from start towards goal until an obstacle boundary is encountered.

At that point, the point slides along the obstacle boundary if and only if such motion

will reduce the distance to the goal. In 2D, sliding is attempted by searching for a

safe point along a line orthogonal to the desired direction passing through the first

point which violated an obstacle boundary. This concept is illustrated in Figure 2.3.

If this sliding alone is not sufficient to clear the obstacle, a new subgoal is created

at random and the process is repeated until a feasible path to the goal is found.

17

Figure 2.3: Goal Directed Sliding

Glavina has results for a 2D prototype and hopes to extend the procedure to a six

dof general purpose manipulator. For the six dof problem, Glavina proposes perhaps

checking 10 possible sliding directions corresponding to each direction of the basis

axes of the 5D hyperplane along which sliding can be attempted. Further research

is planned to determine if it is necessary to expand the set of test vectors beyond

this set.

Many papers have dealt with the motion planning of polygons or polyhedral

objects [8, 11, 13, 15, 18, 24, 47]. While this is the simplest form of the motion

planning problem, this research is useful for mobile robot path planning and forms

a foundation for planning problems of higher dimensionality. The actual methods

used, however, have generally not extended into higher dimensions easily due to the

added complexity of that space. Mobile robot path planning has been an attractive

18

research area because of the low dimensionality involved and because of the practical

applications of mobile robots [9, 21, 22].

Lozano-Perez and Wesley [26, 33] present a visibility graph (vgraph) technique

for polygonal and polyhedral objects. Vgraphs are graphs whose nodes are the

vertices of polyhedral c-space obstacles. Nodes which are visible to each other are

linked and assigned a weight proportional to the distance between them. The graph

is then searched for the optimal path. It is difficult to effectively apply vgraphs to

problems in more than two dimensions. For example, the vgraphs can be constructed

from the vertices of polyhedra, but the shortest path no longer lies in the visibility

graph.

Rovetta [451 presents a more recent variation on the vgraph method whereby

all obstacles which impede the traversal straight from start to goal are grouped

into a single monoobstacle consisting of the convex hull of the individual problem

obstacles. Such an approach reduces computation and produces more efficient paths

but it may convert a solvable problem into an unsolvable one.

Two other free space searching techniques include generalized cones [49] and

voronoi diagrams [8, 50, 51]. The first technique produces a safe path by piecing to-

gether the centerlines of generalized cones whose sides are the faces of the obstacles.

The generalized cone algorithm translates a polygonal moving body along the axes

of the generalized cones and rotates it at cone intersections. This algorithm may

fail when an object must translate and rotate simultaneously to avoid obstacles. A

voronoi diagram is a collection of surfaces that are equidistant from two or more

obstacles. A safe path is found by traversing appropriate regions of these surfaces.

These two techniques have the desirable feature of keeping the robot as far from

obstacles as possible. In a narrow corridor, this is a desirable feature. In cases

which much open space, however, it may yield a much longer path than necessary.

It is difficult to apply either of these techniques in more than 2D.

19

An interesting path planning techniqueis presentedby Lumelsky [52-56]. He

makes three assumptions: (1) The arm endpoint can move through a simple curve,

(2) when the arm hits an obstacle, it can identify the contact point on the arm,

and (3) the robot can follow an obstacle boundary. While only local information

is used, Lumelsky's algorithm is complete. He reduces planning a path for a robot

to planning a path for a point on the surface of some manifold. In two dimensions

he is able to apply his algorithm using the "same turn first" strategy for traversing

the surface of any obstacles encountered in the straight line path from start to goal.

His work has yet to be implemented for more than two degrees of freedom since,

in that case, there are an infinite number of possible directions to follow on the

obstacle boundary. To simplify this situation, Petroz and Sirota [57] suggest cutting

the obstacles in the higher dimensional c-space with planes to limit the boundary

following directions to right and left. The difficulties with this approach are that

an infinite number of such planes exist and that a solution will typically need to

employ more than one such plane.

Lozano-Perez and Wesley [24, 25, 33] describe an approach for motion plan-

ning which is based on the idea of expanding obstacles. This approach essentially

involves the expansion of the obstacles in such a manner as to reduce the path

planning problem for an n-dimensional shape to an equivalent problem for a sin-

gle point in that n-dimensional space, where it is the expansion of the obstacles

that allows the equivalence. Computational complexity becomes excessively bur-

densome for cases of dimensionality greater than two. Very little is known about

how to apply Lozano-Perez's algorithm to systems with three or more degrees of

freedom, although Lozano-Perez has expanded the procedure to consider cartesian

manipulators (robots with three prismatic joints).

Warren [58] presents a vector based algorithm currently being developed for

planning the path of a robot among irregularly shaped obstacles. In this technique,

2O

a c-spacevector is created from the start position to the goal position. If this vector

crosses unsafe space, a second vector is used to determine a new intermediate goal

and the previous goal is stored for later use. This second vector is drawn from the

centroid of the obstacle though the midpoint of the unsafe potion of the initial vector

and continues until reaching a point in safe space. The overall procedure is applied

repeatedly until the ultimate goal can be reached. A 2D illustration of this approach

is shown in Figure 2.4. This technique h_ a divide-and-conquer flavor to it but has

sa?e space

t

start

Figure 2.4: Vector Based Divide-and-Conquer

drawbacks which limit its effectiveness to only a few dof. These drawbacks include

requiring exhaustive mapping of obstacles and having no guarantee of finding a safe

point along the vector from the centroid through the midpoint of the unsafe region.

A recent divide-and-conquer based approach is a heuristic approach for carte-

sian manipulators presented by Lee [59]. Lee divides the cartesian robot pick-and-

place task into a vertical departure motion, an intermediate planar motion, and a

vertical approach motion. The 2D vgraph algorithm is used to solve each phase of

the problem using heuristics to address part rotation about a vertical axis. This

21

approachcannot be practically applied to spatial manipulator path planning prob-

lems.

Dupont [5] addresses the path planning problem for kinematically redundant

manipulators. The basic philosophy employed by Dupont is that of performing se-

lective rather than exhaustive mapping of configuration space thereby minimizing

the exponential growth problems associated with complete graph search techniques.

The strategy which Dupont follows involves first creating a path which is linear in

joint space (c-space) between the start and goal positions. This path is discretized

and checked for collisions at each point along the path. Dupont attempts to traverse

around regions along the initial path where collisions occur by applying some heuris-

tics to choose a cartesian strategy direction that will likely allow circumvention of

the trouble regions. The Jacobian is then used to determine the possible safe c-space

moves that achieve the desired task space strategy directions. Octree representa-

tions are used to determine if collisions occur for a given configuration. Dupont's

algorithm successfully planned obstacle avoiding paths for a seven dof redundant

manipulator.

A somewhat similar approach is taken by Kondo et al [60]. Although Kondo's

intended application is the movement of parts and assemblies within CAD sys-

tem representations (this type of problem is often referred to as the piano mover's

problem), the nature of that problem directly parallels the robot motion planning

problem. Kondo's basic approach is similar to Dupont's in that he tries to restrict

the amount of c-space referred to during a path search (by selectively mapping

c-space) in order to avoid executing unnecessary collision detections. Kondo uses

octrees and combines a global strategy with a local strategy. The global strategy

finds the limits of free space which are encountered in going from the start toward

the goal and from the goal toward the start. The local strategy then enumerates

only cells along the boundary of the free space which was encountered in attempting

22

to traversedirectly betweenthe start and goalpositions. It is in this manner that

Kondo's algorithm greatly reduces the typically burdensome amounts of computa-

tion and storage required to fully define an octree representation of the workspace.

In addition, by looking only from the start towards the goal (and vice versa) until a

collision occurs, Kondo is avoiding searching potentially large islands of sate space

which are unreachable. Using the piano mover's analogy and trying to move the

piano from the hallway to the dining room, Kondo's algorithm will avoid searching

the bedroom if there is no possible way the piano could have gotten into the bed-

room. Kondo applied his algorithm to determine a collision free path for moving a

heat exchanger between two positions in a CAD model of a nuclear power plant.

2.1.2 The Potential Fields Approach

An alternate type of approach is based on the use of artificial potential fields.

Such an approach typically regards obstacles as a source of repelling potential field,

while the desired goal position represents a strong attractor [61]. The hope is that

the moving body can safely traverse from its initial position to the desired goal

position simply by following the potential gradient of the resulting field. The square

of the inverse of distance to obstacles and the negative of the inverse of distance

to the goal are commonly used obstacle and goal potentials, respectively. The

potential fields approach is typically implemented in task space [62, 63] although

some researchers have examined implementing it in configuration space [64, 65].

Some advantages and disadvantages of potential fields approach are noted below.

2.1.2.1 Advantages of the Potential Fields Approach

1. They are faster than other algorithmic methods developed to date.

2. They are readily extended to systems of higher dimensionality.

23

3. They inherently tend to produce paths which avoid obstacles with significant

clearances.

2.1.2.2 Disadvantages of the Potential Fields Approach

1. They tend to have difficulty with local minima, particularly for systems of

higher dimensionality.

2. It is difficult to maintain a global nature since the strength of the attractors

and repellors generally is significant only over small distances.

3. They can have difficulty dealing with arbitrarily shaped obstacles.

4. Implementation in c-space requires knowledge of c-space obstacles.

5. The expression for the obstacle potential becomes cumbersome when there are

many concave objects.

6. They are not as thorough as graph search techniques.

7. The solutions which are found are not generally not optimal.

8. They require robot to obstacle distance and direction information, a more

computationally expensive requirement than a simple yes or no regarding in-

terference.

9. They typically disallow motion very near or along obstacle surfaces, yet dock-

ing, parts mating, and other common tasks require navigation near or along

the boundary of the safe configuration space.

Hirukawa and Kitamura [66] claim to avoid the deadlocks at local minima by

forming a graph in cartesian space of the positions farthest from obstacles. The

end effector tries to follow this graph to the goal while the robot links are attracted

24

toward the lines of the graph. The formation of the graph involves global world

knowledge.

Some researchers' efforts to address the local minima problem involve combin-

ing the potential fields planning approach with a higher level global planner [65,67-

70].

Warren [65, 71, 72] presents several techniques for global path planning using

potential fields. One approach is to first choose a trial path and then to modify that

path by the addition of intermediate points until it represents an acceptable solution.

The intermediate points are found using the potential function. By choosing the

trial path as a series of more closely spaced points than the entire global problem,

Warren greatly reduces (but does not eliminate) the possibility of being caught in

local extrema of the field. Another approach utilizes the penalty function simply to

modify the unsafe regions of a trajectory initially proposed by the planner. The

result is that the path is modified only where it intersects an obstacle thereby

reducing global sensitivity to the local minima problem. Warren illustrates his

techniques for several cases: a 2D revolute manipulator, a mobile robot capable of

translation only, and a mobile robot capable of translation and rotation.

Munger [70] takes an approach much like Warren's described above in that he

divides the global problem into a series of shorter problems which go through some

number of safe intermediate points. The idea then is to solve a series of shorter prob-

lems which can be combined to yield a global solution. Munger applies his algorithm

to a nine degree of freedom manipulator assembling struts to form a tetrahedron.

The workcell for Munger's application is relatively uncluttered. Applying this tech-

nique to general robot path planning problems is potentially troublesome due to

the dii_culty in identifying the intermediate points appropriately so as to enable a

solution to be found.

25

Kim and Khosla [73] proposea different meansto handle the local minima

problem. Their approachusesharmonic function basedpotential functions with the

property that they are free from local minima in a singularity free space. The panel

method, a tool from computational fluid mechanics, is used to solve the potential

flow problem. For point mobile robots this ensures well behaved potential functions

which can be solved quickly even with complex and concave obstacles. For nonpoint

robots the geometry introduces structural local minima which are positions where the

robot can no longer safely move along the potential's gradient. Kim and Khosla have

applied this method to a bar shaped mobile robot and a 3 dof planar manipulator.

They note that it should be possible to extend their technique to 3D problems by

using 3D harmonic functions. Their work also illustrates that the local minima

problem still persists even with obstacles having simple shape.

Other means of addressing the local minima problem include generalized po-

tentials [74], a Laplacian approach [75], and a local minima free technique for gen-

eralized disc obstacles in a generalized sphere world [76].

Faverjon et al [77] address the problem of having the potential function dis-

courage paths near obstacles by basing the potential function on the object approach

velocity.

Barraquand and Latombe [78] present an algorithm which is geometrically

similar to Glavina's (see Section 2.1.1). Barraquand combines potential functions

and graph search techniques to solve problems with a high number of dof. The

algorithm builds a graph connecting local minima of a potential function in c-space

and searches this graph for sequences which will produce a solution. Local minimum

are connected to each other using a Monte-Carlo randomized motion as needed to

• escape the first local minimum followed by a gradient motion based on the potential

function. The local minima graph is searched depth first with random backtracking.

The algorithm is complete since, given due computation time, an exhaustive search

26

would eventually result. Barraquand presents results for a relatively simple problem

with a 31 dof manipulator which was solved in 15 minutes. The planner's ability to

quickly solve more difficult but practical problems is not demonstrated in [78].

Lozano-Perez [79] present a task-level approach which involves both potential

fields and c-space graph search methods. Lozano-Perez solves the pick-and-place

problem by decomposing it into nearly independent, computationally feasible, sub-

problems. The two main subproblems are the grasp locations and approaches thereto

(at both the pick and place ends of the motion) and the gross translational motion

from the general locality of the pick location to the general locality of the place

location. A grasp position is determined by transforming the obstacles at the place

location to their equivalently limiting positions at the pick location and searching

the resulting c-space for a feasible grasp position. Having determined the grasp

points, Lozano-Perez uses a potential fields approach (and some trial and error) to

determine an arbitrary free approach/departure point in the vicinity of both the pick

and the place locations. The final phase of Lozano-Perez's task planning is then to

plan the free motion plan between the departure point and the approach point. This

is done using c-space obstacle mapping and includes the assumptions that orienta-

tion may be neglected and that the first three robot joints invoke 3D translation.

Exhaustive mapping of the resulting 3D c-space is avoided by progressing in 2D

slices within that space until a solution is found.

2.1.3 The Human Assisted Approach

The mathematical complexity of a computed complete (even if suboptimal)

solution to the general motion problem apparently make it intractable for more than

a few degrees of freedom. Humans seem to possess some natural abilities to _see"

solutions to many motion planning problems for which computing a solution is still

difficult or excessively computationally intensive. It is precisely this apparent human

27

ability that the human assistedapproachto path planning attempts to capitalize

Oil.

In its simplest form, human assisted path planning is accomplished on-line.

This usually involves moving the robot using a teach pendant and storing a series

of points along a collision-free path. The points can later be re-played in sequence

to execute the desired task.

More typically, the human assisted approach employs computer graphics mod-

els of the robot and its environment. The user can then perform the motion planning

in an off-line graphical manner. It is usually possible to display multiple views to

allow the user to detect any potential collisions. More advanced systems can au-

tomatically perform the collision checking. Systems which can compute estimated

task execution time can also allow the user to search for a very efficient path. As

the number of times a particular task is to be repeated increases, the benefits of

obtaining a very efficient path become more pronounced.

Some systems presented in the literature which are suitable for the human

assisted approach to off-line path planning are presented by Derby [80], Hornick

and Ravini [81], Stobart [82], and Han [83].

More recently, advances in telerobotics has produced systems in which people

may be employed as on-line path planners. Telerobotics, as described by Weis-

bin [84], includes three main paradigms of control:

I. Teleoperation, in which a human directly controls the remote device in real

time

2. Robotics - in which the remote device is preprogrammed

3. Supervisory Control- in which the human controller gives high level commands

which are decomposed and executed by the machine under human supervision.

Human assisted path planning would typically be involved in paradigm (1), whereas

28

autonomouspath planningcouldbe integrated into paradigm (3) to eliminate some

of the burden on the operator.

2.2 Path Planning for Cooperating Robots

While they are inherently similar, there are some key differences between mo-

tion planning for single manipulators and for cooperating robots. Some of these

differences are shown in Table 2.1. These differences are discussed later in Sec-

tion 4.1.

Single Robot

Path Planning

Typically relatively large amounts

of free space available.
Translations and rotations may

often be decoupled.

Task space heuristics often

effective for path planning.

C-space approaches inherently

handle multiple arm configurations, i

Cooperating Robot

Path Planning

Closure constraint leads to compar-

atively little free space.
End effector orientation important

for maintenance of feasible

configurations.
Second robot makes effective use of

task space heuristics very difficult.

Configuration of second robot must

be considered explicitly.

Table 2.1: Single Robot vs Cooperating Robot Path Planning

In comparison to the single robot path planning problem, the cooperating

robot path planning problem has thus far received relatively little attention in the

research community. Perhaps this is because an efficient exact algorithm for single

robot planning is yet to be developed. Nonetheless, several researchers have specif-

ically considered the cooperating robot path planning problem. Their efforts are

summarized below.

Chien [85] presents a path planning technique for two cooperating planar

robots each having two links and three revolute joints. Chien's solution process

29

involvesdividing the subspaceinto two 2D subspaces, one for each of the two pos-

sible configurations of the second robot given a specified configuration of the first.

These two subspaces are connected by transition configurations for which the con-

figuration in each of the two subspaces is the same. The "same turn first" strategy,

an algorithm which guarantees finding a solution if one exists, is used to search for

a sequence of moves within and between the two 2D subspaces which will connect

the start and goal configurations. While this technique is complete, its practicality

is apparently limited to planar robots.

Koga and Latombe [86] present a complete planning technique for cooperating

arms with only a few degrees of freedom. The technique is based upon systematic

searches of c-space grids. They present another planner which is not complete but

is practical for more dof. This technique uses randomized potential fields planning

techniques similar to Latombe's prior single arm work [78] discussed in Section 2.1.2.

The technique has been implemented for redundant planar manipulators. Unlike

other research discussed herein, Koga and Latombe allow the the grasp positions

of the robots to be altered during a manipulation by temporarily halting motion

of the payload and repositioning an end effector. Thus far, their potential fields

planner requires some assumptions which significantly affect the planner's reliability.

Difficulty was also experienced with more than a few obstacles.

An analytical technique for single robot path planning involves the use of kine-

matic constraints to pose the path planning problem as an analytical optimization

problem. Seereeram and Wen [87] present an example of such a technique by posing

the path planning problem as a finite time nonlinear control problem and solving

it using a Newton Raphson type algorithm. This approach represents the require-

ment of obstacle avoidance with a set of inequalities on the configuration variables.

Such approaches are still under development and may prove useful in the future for

solving practical problems for robots with many dof. Lim and Chyung [88] apply

30

a similar techniqueto the cooperating robot path planning problem by reformulat-

ing the problem as a non-linear optimization problem. Their methodology essen-

tially involvesdetermining an admissible trajectory for the object being grasped,

whereadmissibility involves teachability by both robots. This method determines

a feasiblepath by employingoptimization methodsto modify the cartesianstraight

line/constant rotation path of the object. Since the feasibility of an object path is

investigated at the joint level, the resulting solution is in joint space. No provisions

are made for collision detection or obstacle avoidance. Lim presents results for de-

termination of a simple trajectory for two cooperating five degree of freedom RHINO

robot arms. It is unclear whether Lim's methodology would be applicable to more

difficult problems requiring obstacle avoidance and arm configuration changes.

Hu [89] presents an approach to control multiple cooperating redundant ma-

nipulators. While control rather than path planning is Hu's primary concern, the

approach allows use of the redundancy to avoid collisions between the robots and

obstacles while traversing a specified task space trajectory. Determination of a suit-

able task space trajectory for the payload would still require some type of higher

level path planner.

McCarthy and Bodduluri [90] examine the design and motion planning prob-

lem for closed kinematic chains such as cooperating robots. Their motion planning

algorithm utilizes selective mapping of c-space and involves subdividing c-space into

hypercubes until a safe path may be found by traversing edges of the hypercubes. A

2D depiction of this algorithm is given in Figure 2.5. Figure 2.5a shows a bounded

2D space, some circular obstacles, and prescribed start and goal points (S and G,

respectively). The space is subdivided at the start point (Figure 2.5b), and fur-

ther subdivided at the goal point (Figure 2.5c). Finally, all non-empty regions with

reachable vertices are subdivided until a solution is found (Figure 2.5d). This type

of approach is referred to as cell decomposition. McCarthy and Bodduluri solve

31

Calf

×

Cc_ f

5

J X
G

Cd_

G

Figure 2.5: Hypercube Subdivision Algorithm

the cooperating Puma problem for several cases for which maintaining closure and

avoiding collisions between the robots appear to be the main concerns. The closure

constraint utilized is simplified by modeling each puma as a 3P,.-1S robot and then

requiring a constant length between the S joints of each robot.

Chen and Duffy [91] also present a path planner for two cooperative Puma

robots. Their approach is to find a feasible position for the first three links of one

of the robots along a discretized path from start to goal. For each point along this

discretized path the possible closure configurations (cones) are investigated to find

a feasible and collision free configuration for the second robot. Because of some

simplifications and assumptions it does not appear as though their approach would

be successful for problems much more difficult than the relatively simple example

illustrated in [91].

32

2.3 Other Related Areas of Research

Other related areas of path planning research which willnot be discussed in

depth in thisthesisinclude:

• Mobile robot path planning

• Coordination of multiple robots

• Piano Mover's problem

• Nonholonomic motion planning

These areas of research are briefly discussed below.

2.3.1 Mobile Robot Path Planning

While all robot path planning problems have inherent similarities, mobile

robot path planning differs in many ways from path planning for general manip-

ulators. Some of the key differences as identified by McKerrow [92] are summarized

in Table 2.2. These differences result in path planning for manipulators being more

complex than path planning for mobile robots. The path planning problem for a

2D mobile robot in the presence of known stationary obstacles has many real-time

optimal (minimum time or minimum distance) solutions. Many researchers of the

mobile robot path planning problem have also considered dynamic obstacles and/or

unknown environments. Such results are made possible by the limited dimensional-

ity of the mobile robot path planning problem. Since we axe concerned with path

planning for manipulators, no detailed discussions will be given to path planning

techniques suitable only for mobile robots. Areas where the algorithms used to

solve mobile robot path planning problems may impact the general manipulator

path planning problem have been included in earlier discussion.

33

Mobile Robot II ManipulatorPath Planning Path Planning

Movement restricted to 3D. End effector may move in 6D.

Whole robot moves from start to

goal.

Robot typically occupies a fixed
volume.

Model of environment typically

incomplete.

Dead-reckoning control of a mobile

robot is subject to significant errors
which acc_lrmllate.

End effector and payload move from

start to igoal.

Volume occupied by robot changes

as joints move.

Exact location and description of

objects in the workspace are

typically known.

Typically assume high accuracy

and repeatability of joint motions.

Table 2.2: Mobile Robot vs Manipulator Path Planning

2.3.2 Coordination of Multiple Robots

Coordination of robots is typically done assuming the individual paths of the

robots are known with the timing to be determined so as to avoid collisions. Research

into the coordination of multiple robots will not be discussed herein since it does

not appear that cooperating robot path planning research will benefit directly from

it at this time.

2._._ Piano Mover's Problem

As mentioned earlier, the nature of the robot path planning problem is very

similar to the piano mover's problem. The piano mover's problem involves planning

a collision free path between two poses for a single, rigid object amongst obstacles.

Because of the inherent similarities between manipulator path planning and the

piano mover's problem, many algorithms such as vgraphs, voronoi diagrams, and

graph search methods may be applied to either. Earlier discussions include such

algorithms. There are also a number algorithms which are specific to a particu-

lar subset of mover's problems and are not applicable to the robot path planning

34

problem.

A recentsurveyof the status of motion planning researchincluding the mover's

problem is providedby Hwanget ai [93l. Hwang suggests that, as a result of problem

complexity, future research should concentrate on heuristic algorithms that run in

a few seconds at the expense of failing to find a solution to very hard, pathological,

puzzle-like problems.

2.3.4 Nonholonomic Motion Planning

The complexity of a certain class of motion planning problems is compounded

by nonholonomic constraints. Nonholonomic constraints are constraints on the

derivatives of configuration variables which cannot be integrated. For example, a

unicycle may maneuver to achieve any position and orientation, but its direction of

motion at any one instant is constrained. Path planning for single and cooperating

robots is holonomic. The nonholonomic problem is much more difficult and efforts

for developing implementable algorithms are just beginning. A review of the current

status of motion planning with nonholonomic constraints may be found in [93].

2.4 Summary of the Literature Review

This section presents a summary of the above literature review. The summary

is presented in four sections:

• Difficulties with Complete Solutions

• Practical Incomplete Solutions

• Potential Fields Solutions

• Cooperating Robots

35

2.4.1 Difficulties With Complete Solutions

Many complete algorithms have been developed for solving the motion plan-

ning problem. However, it appears as though the mathematical complexity of such

techniques renders them computationally intractable when applied to a reasonably

difficult robot motion planning with six or more dof. A general, practical, and

complete solution to the motion planning problem has not yet been developed.

There are a number of complete approaches which attempt to achieve solution

time commensurate with problem difficulty. The computational practicality of these

techniques for reasonably difficult yet practical path planning problems remains to

be demonstrated.

2.4.2 Practical Incomplete Solutions

As a result of problem complexity, practical techniques used to solve the single

robot motion planning problem for six or more dof involve some heuristics or sim-

plifying assumptions and lack completeness. Sometypical simplifications include:

• Simplified models of the robots and obstacles

• Decoupling of rotations from translations

• Compact wrists and payloads

• Restrictions on allowable motions and allowable obstacles

These simplifications and heuristics are typically robot and/or task specific and

would not be expected to perform well in more general cases or for two robots

working cooperatively due to the differences presented earlier.

The speed and success of the most useful algorithms can be attributed to their

pruning of the search space by reducing problem dimensionality or by their ability

to selectively map c-space thereby avoiding intractable exhaustive mappings.

36

2.4.3 Potential Fields Solutions

The potential fields approach to single arm path planning constitutes an effec-

tive way to combine the constraints resulting from several obstacles for many simple

cases, but the fact that motion planning using potential fields is based solely on local

information has led to some difficulty in achieving effective high level planning. The

most effective potentials fields approaches determine a sequence of intermediate via

points between which there are no local minima.

2.4.4 Cooperating Robots

Of the work which has been published for path planning of cooperating robots,

much of it is limited in effectiveness to planar systems. The researchers who have

addressed cooperating robots with six or more degrees of freedom have apparently

been successful only in solving problems which appear to be relatively simple.

Research pertaining to path planning for cooperating robots utilizing potential

fields appears to be still in its early stages. Results so far have been limited to

redundant planar systems with only a few'obstacles.

CHAPTER 3

Statement of the Problem

This chapter presents a formal definition of the robot path planning problems being

addressed by this thesis. Some general background information is given in Sec-

tion 3.1. Sections 3.2 and 3.3 discuss assumptions and goals, respectively. Formal

definitions of the single and cooperating robot path planning problems are given in

Sections 3.4 and 3.5, respectively.

3.1 Background

A robot can be described by its forward kinematic equation

T_ n = f(e) (3.1)

where T_ E "R.m represents the task space transformation (position and/or orien-

tation) of the end effector and ® = (61,..., 0n) E _n represents the robot's joint

configuration, where n is the number of degrees of freedom (dof). For spatial robots

with three translational and three rotational dof, m = 6.

A robot's inverse kinematic equation

® = f(T_) (3.2)

identifies joint configurations ® which would result in a specified task space trans-

formation T_ n. For a non-redundant robot capable of achieving any desired position

with any desired orientation (within workspace limits), n = m, and Equation 3.2

will possess only a finite number of solutions ® for a given T_ n. For redundant

robots n > m and equation 3.2 is underdetermined, indicating that an infinite num-

ber of robot configurations ® exist which produce the end effector transformation

T_ n. The problem of solving Equation 3.2 for a redundant robot is referred to as the

37

38

redundancy resolution problem. A robot with n < m has fewer dof than required to

arbitrarily position and orient its end effector in the workspace. The inverse kine-

matic equation for such a robot is overdetermined, i.e., it will have solutions only

for transformations which lie in the limited workspace of the robot.

3.2 Assumptions

This section restates the assumptions presented in Subsection 1.2.1 and pro-

vides a discussion regarding each assumption.

Assumption 1 Forward kinematic models of the robots are available.

Discussion: A robot may be represented using the Denavit-Hartenberg con-

vention from which the forward kinematic model (Equation 3.1) can be easily de-

rived [94].

Assumption 2 Closed-form inverse kinematic models of the robots are available

for six dof robots or for the final siz links of redundant robots.

Discussion: This thesis addressed full spatial robots for which n > m = 6 (see

Section 3.1). Most commercial six dof robots satisfy one of the following sufficient

conditions which enables a closed-form inverse kinematic solution [94]:

1. Three adjacent joint axis intersect.

2. Three adjacent joint axis are parallel to one another.

Unimation Puma manipulators, which will be used in the case studies for this thesis,

satisfy the first condition. In general, multiple solutions will exist representing

various possible robot configurations. For redundant robots, it is assumed that the

final six links can be treated as a single six dof robot for which a closed-form inverse

kinematic model is available. The usefulness of this assumption regarding redundant

manipulators will become evident later in this thesis.

39

The path planning strategy in this thesisdoesnot require inverse kinematics

for single robot path planning problems.

Assumption 3 Geometric models of the robots, payload, and obstacles are avail-

able.

Discussion: Robots and their environment may be represented by some form

of geometric model. Some typical forms of geometric modeling include boundary

representations (b-reps), constructive solid geometry (csg), and polytope represen-

tations. The geometric model will contain knowledge of the geometry, position, and

orientation of the robot links, the payload, and each obstacle in the workcell. The

only constraint regarding geometric modeling is that a facility for performing colli-

sion detection is required. Neither the source of this geometric information nor the

data structure format of the geometric model is important from the perspective of

the path planner. For static obstacle path planning purposes, the geometric model

need only consist of a geometric description of the robots, payload, and objects in

the environment.

Assumption 4 Obstacles in the workspace are static.

Discussion: The added complexity of a dynamic environment make it unlikely

that a practical planner for cooperating multi-dof robots with dynamic obstacles will

be developed anytime soon.

Assumption 5 Feasible and collision free start and goal joint configurations of the

robots are known, as are the start and goal positions of the payload.

Discussion: There are several key consequences of this assumption. First,

note that the grasp positions are inherently defined by this assumption. The deter-

mination of suitable grasp positions is highly task specific, potentially very difficult,

4O

and beyond the scope of this thesis. Secondly, note that specifying the start and

goal joint configurations as opposed to the start and goal task space configurations

eliminates the need for the path planner to choose particular solutions to the inverse

kinematics at the start and goal positions. It is re_onable to assume that the start

joint configurations are known since some single arm planning must have been done

to position the robots at their initial positions. Requiring that the goal joint con-

figurations be known is more demanding than simply specifying a task space goal

for the payload. Typically even non-redundant robots would have several possible

configurations (such as elbow up or elbow down) which satisfy a particular task

space goal. The solvability of the path planning problem can depend upon which

joint configuration is specified as the goal. An example where the choice of goal joint

configurations determines the solvability of a path planning problem is illustrated

in Figure 3.1. Figure 3.1a shows the start position for two cooperating 3R planar

(a)

s'tar't

(b)

ach;evabte goat

(c)

unachievalote goat

Figure 3.1: Choice of Goal Joint Angles May Affect Solvability

robots. Figure 3.1b shows a choice of goal joint configurations which result in a

solvable problem for the case illustrated. As shown in Figure 3.1c, a different choice

of goal joint configurations which produce the same task space goal can result in an

41

unsolvableproblem. In the case of redundant robots some form of redundancy res-

olution is required to specify the goal joint angles. Redundant robots will typically

possess one or several regions in c-space which yield a desired task space goal.

It is a clear disadvantage to require the goal joint configurations be specified

at the outset of the problem since this information must come from some higher

level source and may directly determine the existence of a solution. However, a few

incidental advantages arise from the extra knowledge required by Assumption 5:

• Path cyclicity concerns are eliminated. A path planner will often be required

to execute a task which is repetitive in task space. Path planners which do not

specify the start and goal joint angles for a particular path planning problem

often suffer from path cyclicity problems whereby the robot does not achieve

the same configuration on subsequent repetitions of identical task space tasks.

q) Path planning problems may be attacked either from start to goal or vice

versa. The ability to attempt to solve a path planning problem from either

direction (or even from both directions simultaneously) may prove to be ben-

eficial if the algorithm or heuristic being used happens to be more successful

in one direction than in the other for a particular path planning problem. For

example, planning a path to remove a peg from a hole would intuitively seem

much simpler than planning a path to put the peg in the hole. The 2-D prob-

lem illustrated earlier in Figure 2.2 is one which would have proven easier to

solve backwards if using an A* graph search approach. As discussed earlier in

Section 2.1.1, the ability to search bidirectionally is often valuable.

• A preferred goal robot cont_guration may be achieved. In some cases it may

be desirable to supply the path planner with a specified goal robot configu-

ration rather than allowing the path planner to choose any which satisfy the

goal position/orientation in task space. For example, a reliability analysis or

42

robot flexibility analysismight be used to prescribe a preferred goal robot

configuration.

Our needfor Assumption5 stems from the fact the our approach is configu-

ration space based. This will become clear as our solution technique is presented

later in this thesis.

Assumption 6 Motion between the specified start and goal positions may be arbi-

trar71.

Discussion: This assumption illustrates that interest is solely to move from

start to goal without restriction on the path. This is the most general form of the

path planning problem and is acceptable for solving the vast majority of problems.

As an example of a task for which this assumption would not be valid, consider

two robots cooperatively manipulating a trough of water. Clearly such a task would

impose a constraint on the motion between the start and goal positions such that the

trough would remain level so as not to spill the water. Another example requiring

restricted motion involves contact between the robot/payload and its environment.

Although such cases are not considered herein, some discussion of how they might

be addressed is presented later in Section .5.4.

In cases where a specific task space path must be followed the problem becomes

one of configuration selection or redundancy resolution rather than a classical path

planning problem. For example, a nine dof robot performing arc welding along a

specified task space path is not a nine dimensional path planning problem but rather

a much simpler three dimensional redundancy resolution problem.

Assumption 7 The planner may ignore robot dynamics.

Discussion: This assumption is valid when considering only static obsta-

cles and since a time optimal trajectory is not sought. Algorithms which consider

43

dynamics typicallyassume that an initialpath isgiven and dynamic optimization

is done locallyalong the path [95]. Under dynamic optimization, path curvature

becomes an important characteristic.

3.3 Goals

This subsectionrestatesand discussesthe goals presented in Subsection 1.2.2.

Goal 1 The planner shall locate reasonable collision-free paths in a time frame suit-

able for off-line path planning.

Discussion: It appears as though the search for an optimal path and/or a

real time solution for non-trivial path planning problems with more than a few dof

will remain computationally intractable for some time to come (See Chapter 2).

Goal 2 The planner shall be capable of modifying a feasible path into a more effi-

cient one.
2

Discussion: It is typically possible to modify a suboptimal path found by a

path planner to produce a smoother, more efficient path.

Goal 3 The planner shall be applicable to various robotic systems and various tasks.

Discussion: Some path planning techniques perform well only with specific

types of robots or for certain types of tasks due to their use of simplified, case specific

assumptions or heuristics. We would like our solution technique to remain free of

any assumptions which would limit its use as a general-purpose path planner.

44

Goal 4 The planner shall be practical for cooperating siz dof manipulators as a

minimum, and ideally for cooperating redundant robots.

Discussion: It should be noted that the practicality of a path planning tech-

nique for a robot with six or more dof is important since at least six dof are required

to arbitrarily position and orient an end effector. Many of the path planning tech-

niques discussed in Chapter 2 are not practical for robots with six or more dof.

Goal 5 The planner output shall be a sequential listing of closely spaced knot points

in joint space which represent the discretization of a continuous, feasible, and ob-

stacle avoiding path connecting the start and goal configurations.

Discussion: This goal is consistent with integrating a path planner into the

CIRSSE testbed system using a traditional three-step decomposition of the move

robot problem. The three steps are path planning, trajectory generation, and motion

control. A trajectory generator may be used on the output of the path planner to

provide timing information consistent with the dynamic constraints of the system.

The knot points determined by the path planner shall be spaced closely enough

that the trajectory generator need not be concerned with maintaining the closure

requirement between knot points. Execution of the time parameterized trajectory

may be carried out by a motion control system. Some fine compliance will typically

be required due to inaccuracies in the robot model or tracking errors at the control

level. Such compliance could be either passive, such as a compliant end effector, or

active, such as compliance based on force/torque feedback. Details of the trajectory

generation and motion control steps are separate areas of research which are beyond

the scope of this thesis.

45

3.4 Single Robot Path Planning Problem Statement

Per the background and assumptions statedabove, the singlerobot path plan-

ning problem may be formally defined as follows:

Given:

I. A singlerobot described by itsforward kinematic equation, Equation 3.1.

2. Geometric models of the robot, the payload, and workspace obstacles.

3. Start and goal joint configurations of ®s and Og, respectively.

Determine:

A closely spaced sequence of k joint space knot points (®1,"',Ok), where

O1 -- ®s and O k = ®g, which represent a discretization of a feasible and collision

free c-space path connecting ®s and ®g.

3.5 Cooperating Robot Path Planning Problem Statement

Per the background and assumptions statedabove, the cooperating robot path

planning problem for two cooperating spatialrobots,referredto as robots I and 2,

may be formally defined as follows:

Given:

i. Two robots work cooperativelysatisfyingthe closure constraint:

T,6q, r2 = T206•0 J-rl

where

robot end erectors as they grasp a common, rigid object.

(3.3)

is an invariant transformation relating the relative positions of the

2. The robots are described by forward kinematic equations:

Ti06 = f(®i) , i=1,2 (3.4)

46

where ®i = (Oil,...,Oini) represents robot i's joint configuration, n i > 6 is

the number of degrees of freedom (dof) of robot i.

3. The robots are described by inverse kinematic equations with at most one

solution:

ei = f(T.i 6, el', cij.) , i=1,2 (3.5)
l

where 8i' = (Oil,... ,Oini_6) , and Ciji represents one of Ji possible robot

configurations for robot i, and Ji is finite and known.

4. Geometric models of the robots, the payload, and workspace obstacles.

5. Start and goal joint configurations of 8is and 8ig, respectively, where i = 1,2.

Determine:

A closely spaced sequence of k paired joint space knot points

((811,021),...,(81k,e2k)), where ei 1 = ®is and 8i k = ®ig, which represent

a discretization of a feasible, continuous, and collision free path connecting

(81s, 82s) and (819, 82g). Each paired knot point (81j, 82j) shall satisfy the

closure constraint, Equation 3.3. Also, the discretization shall be sufficiently fine

so that a trajectory planner may ignore the nonlinearities of the closure constraint

between knot points.

CHAPTER 4

Divide-and-Conquer C-Space Traversal Heuristic

This chapter presents the configuration space traversal heuristic which is the heart

of the path planning strategy presented in this thesis. This chapter merely presents

the heuristic. The utilization of the heuristic is discussed in subsequent chapters.

This chapter is organized into eight main sections:

• Motivation for a New Approach

• Conceptual Description of Heuristic

• Vector Description of Heuristic

• Computing Search Directions

• Prioritizing Search Directions

• Comparison of the Heuristic to the Literature

Section 4.1 discusses the motivation for a new path planning technique for

cooperating robots. Sections 4.2 and 4.3 present conceptual and vector descriptions

of the c-space traversal heuristic, respectively. Computation and prioritization of

search directions used by the heuristic are discussed in Sections 4.4 and 4.5, respec-

tively. Finally, a comparison of the heuristic to published path planning algorithms

and heuristics is presented in Section 4.6.

4.1 Motivation for a New Approach

This section attempts to make a case that there is sufficient motivation for this

new research in the area of path planning for cooperating robots. First, recall from

Section 2.2 that path planning approaches in the literature for cooperating robots

47

48

are generally limited with regardeither to the numberof degrees of freedom (dof)

of the robots or to the apparent difficulty of problems which they axe capable of

solving. Thus, there appears to be sufficient motivation for this research.

Due to the fact that researchers' interest in cooperating robotic systems is

relatively young compared to the much longer history of interest in single robots,

thorough consideration should be given to the application of methods developed

for single robot path planning when searching for a solution to the cooperating

robot path planning problem. There axe, however, some unique elements to the

general cooperating robot path planning problem that make it unlikely that any

of the single arm path planning methodologies discussed in Chapter 2 could be

successfully applied to cooperating robots without significant modifications. These

differences were presented earlier in Table 2.1. Some of these special elements of the

cooperating arm problem and the way in which they impact the solution process

are discussed in this section.

Consider, for instance, two cooperating six degree of freedom manipulators.

The effective number of degrees of freedom for the closed kinematic chain is six

(from Equation 1.1). Hence, the problem is essentially six dimensional (almost as

if it were a single arm problem) but possesses the added closure constraint. This

restriction does not affect the dimensionality of the space in which a graph search

algorithm must perform, but does affect the validity of some of the assumptions

typically used to reduce the system to one of a lower dimensionality. For example,

a common assumption for single arm planning is to neglect orientation for large,

gross moves through space. This assumption would not likely prove effective for two

cooperating robots since the orientation of the load will usually be crucial to the

maintenance of configurations reachable by both robots.

The added difficulty induced by the closure constraint would also make it

extremely difficult to implement a planner based on task space heuristics. One

49

of the difficulties with task space based heuristics for single robot path planning

problems is that they often produce collisions with one obstacle while trying to

avoid another. Such difficulties could only be more severe for a closed kinematic

chain such as results during robotic cooperation. An additional difficulty which

would be magnified by the reduction in free space during cooperation is the fact

that the avoidance strategy suggested by a task space heuristic may not always be

feasible to achieve.

Although the potential fields method should, in theory, be applicable to the

cooperating robot motion planning problem, much difficulty in achieving a reliable

implementation would be anticipated. Much thought would be required to attempt

to develop potential field functions that would be well behaved for the closed kine-

matic chain which results during cooperation. Also, the practice of selecting a grid

of trial points and perturbing them or rerouting the path through a different set

of via points would be significantly more difficult for cooperating robots tha_ for a

single robot. The basis for the preceding statement is that a fax more restricted safe

space results for cooperating arms. As a result, the practice of determining safe trial

points more closely spaced than the overall global problem would be more difficult.

Also, there would be increased likelihood that some intermediate trial points would

lie in unreachable regions of safe space. Results in the literature seem to support

the premise that achieving a practical and reliable potential fields based planner for

cooperating robots would be difficult (see Section 2.2).

The human assisted approaches still maintain their advantage of capitalizing

on the natural ability of humans to solve complicated geometric problems. In fact

it is the human assisted approach by which most non-trivial collision free robot

motion planning is currently accomplished. However, the level of insight which the

user would be required to supply would clearly be much greater for two cooperating

50

arms than for a single arm. This increase in difficulty may make an already poten-

tially undesirable task for a human prohibitively tedious, frustrating, and difficult.

In addition, while the human assisted approach offers the best chance for nearly im-

mediate results, it is contrary to our longer term goals of creating more autonomous

robotic systems capable of complete task planning and execution from a task level

command.

The path planning procedure being presented herein is of the graph search

type and, in a fashion similar to Dupont's approach to path planning for a single

redundant manipulator (see Section 2.1.1), the procedure involves selective mapping

of c-space on an as needed basis to reduce computational burden. Because of the

added difficulty of the cooperating arm problem, an improved heuristic was sought

to guide the mapping of c-space in a manner directed towards finding a solution with

a minimal amount of mapping. This resulted in the development of the ``divide-and-

conquer" c-space traversal heuristic presented below.

4.2 Conceptual Description of Heuristic

In this section, a novel _divide-and-conquer" style heuristic is presented for

traversing an n-dimensional space consisting of safe and unsafe regions. For pur-

poses of robot path planning, the space to be traversed is c-space. The heuristic

is general in nature and, while our intended application is to solve the robot path

planning problem, this technique could be used to attempt to traverse any space

consisting of regions of safe and of unsafe points. An example of another possi-

ble application is the "piano movers' problem." Because of the impracticality of

mapping the space exhaustively for dimensionality greater than perhaps three, the

heuristic was formulated to be compatible with selective mapping of c-spax:e with no

computationally expensive precomputations. The c-space traversal heuristic is the

51

"backbone" of the path planning technique being presented in this thesis. Discus-

sion of the application of the c-space traversal heuristic to the robot path planning

problem is deferred until the next Chapter.

This section describes the heuristic conceptually using several simple 2D and

one 3D illustrative examples. A vector description of the heuristic is given in Sec-

tion 4.3. Although the pictorial examples herein are mainly 2D for simplicity of

illustration, the approach suffers no loss of generality regardless of problem dimen-

sionality (although the complexity of the searches increases with problem dimension-

ality). The vector description presented later is applicable to a space of arbitrary

dimension.

To illustrate the heuristic, consider the 2D path planning problem illustrated

in Figure 4.1a, where ®s and ®g are the start and goal positions, respectively. The

following note is important:

In this example and subsequent examples herein the boundary of the

unsafe c-space is defined in the figure as though the c-space obstacle has

been mapped out. This is not the case, but the entire unsafe region is

shown a priori to provide better understanding of the subsequent steps.

First, the n-dimensional direction vector from the start point to the goal point is

calculated and an attempt is made to traverse along that vector until the first unsafe

point is found. This involves discretizing the path from the start to the goal and

mapping each successive step along that path until the first unsafe point is found.

In the example, the progression from Os is safe through point ®a (Figure 4.1b).

Points safely mapped are indicated by the solid circles in the Figure.

Next, the progression along the straight line path from start to goal is contin-

ued through the unsafe region until the first safe point is found. In the example,

this first safe point is labeled ®b in Figure 4.1b. Unsafe points mapped in this

process axe indicated by the open circles. Although in this example e b lies in the

52

A7*"
/ space 8e

8s_" sa_e space dlrec_;ons \

(F)

°O.o • •points o •
@ •

mapped o .
@ o

• @

• • •

• • • OO@

Figure 4.1: 2D Example of C-Space Traversal Heuristic

same connected regionof safe space as the startand the goal points,this willnot

be true in general. Next, the intentisto finda safe point in the n- 1 dimensional

space orthogonal to and bisectingthe vectorbetween the lastsafepoint (®a in the

example) and the firstsafe point on the other side of the homogeneously unsal'e

region (®b in the example). It isapparent that such a safe point must existifthe

problem at hand issolvable.In thisexample, thisreduces to searching the ID line

shown in Figure 4.1c. The search methodology depends upon whether this is an

initialsearch or a subsequent search:

• For an initial search, the search space is effectively searched for the safe point

nearest to the midpoint of the unsafe line segment which was mapped previ-

ously. This is done by radiating out equal amounts in all search directions

until a safe point is found.

53

• For a subsequent search, the search directions axe prioritized and searched non-

uniformly per the methodology discussed in Section 4.3. In 2D, a prioritized

search would first search in the search direction which has a component in the

direction of the previously successful search direction. If no safe point can be

found in that direction, the opposite direction is searched.

Since this is the initial search in the example, the line is searched discretely and

in both directions equally from the midpoint until safe point ®c is found (see Fig-

ure 4.1d). Next, an attempt is made to traverse to the safe point from the last

safe point initially found in trying to go directly from the start to the goal (that

point being ®a in the example). The following steps depend upon the result of that

attempted traversal, as detailed by the following two cases:

Case 1: The Traversal to the New Safe Point is Entirely Safe

In this case it is attempted to traverse to any previously determined guide

points, where guide points are previously determined safe points such as those found

at the other side of the homogeneously unsafe region or intermediate goal points

found in any prior searches. The sequence for considering the guide points is the

opposite of the order in which they were found with the global goal point to be

considered as a final guide point. When progression to a particular guide point

is not entirely safe, that guide point is permanently dismissed and progression is

attempted toward the next guide point in the specified sequence. It is in this manner

that productive use may be made of safe points which could be in unreachable regions

of sage space. As a result, intermediate guide points may or may not be part of the

final path. The attempted progressions continue until an attempt has been made

to progress to the global goal point. If progression can be made to the global goal

point the entire path planning problem has been solved. Otherwise, the last safe

point progressed to becomes the new start point and the entire heuristic is repeated

until the global goal point has been safely progressed to.

54

Note that only points which have been safely progressedto from the start

point aremandatorily included aspart of the final path but thosewhich may be in

unreachableregionsare usedto help guide the overall process.All points actually

comprising part of the path will, of course,be in the sameconnectedregionof safe

spaceas the start point.

The 2D exampleof Figure 4.1 invoked this casesincethe attempt to traverse

from Oa to ®c canbeseento besuccessful(Figure 4.1e),after which progressionis

made to guidepoints ®b and ®g thereby completing this simple 2D path planning

problem with the resulting path shown in Figure 4.1e. The c-spacepoints which

required mapping during the processareshownin Figure 4.1f. Note how relatively

few points weremappedby this technique.

Case 2: The Traversal to the New Safe Point is Not Entirely Safe

In this casethe heuristic is recursivelyapplied taking the last point safely

progressedto as the start point and the safepoint found in the last searchas the

goal point.

4.2.1 More 2D Examples

Another 2D illustration of the heuristic is given in Figure 4.2. The solution

sequencein this exampleissimilar to that in the previousexampleexceptin this case,

following the safe traversal to the safe point ®c, no progression can be made toward

®b" Thus ®b is disregarded, progression is attempted toward the second guide point

®g resulting in the solution shown in Figure 4.2e. Note that the disregarded point

did not necessarily have to lie in the same region of safe space as the start and goal

positions (although it did in this example).

An example of a 2D task which would result in a c-space having an unreachable

safe region is shown in Figure 4.3. A 2D illustration of the c-space traversal heuristic

for a problem with two disjoint regions of safe space is illustrated in Figure 4.4. This

55

8s"k safe space

(d)

"k

(I=)

° e •

po;nt:s eo • • •

napped o°° oo
o • •

• • • • °O_o

• O • e

Figure 4.2: Example Which Dismisses an Intermediate Point

illustration also demonstrates the inherent reversal nature of the heuristic when

a joint limit problem is encountered (the second search hits a joint limit in the

preferred direction after which reversal occurs). This example also illustrates the

heuristic for a problem requiring multiple searches.

4.2.2 A 3D example

An example of the c-space traversal heuristic applied to a 3D problem is il-

lustrated in Figure 4.5. In the 3D case, the search space is 2D (planar). For this

example eight evenly distributed search directions were considered with the search

directions prioritized into two groups (prioritization is discussed below).

4.2.3 Philosophy Behind the Heuristic :_ _+: • : +_ _

The basic idea behind the "divide-and-conquer" c-space traversal heuristic is

that better local decisions at the beginning of the trouble region may be made if a

56

(b)

unreachab(e posi't:;on

(c)

goQt

Figure 4.3: Scenario Which Would Result in Non-Disjoint C-Space

possible way around the "center" of the trouble region is known. Thus, rather than

attempting paths which look promising locally (at the beginning of a trouble region)

but which may not yield overall results, the heuristic attempts local strategies that

appear to have a possible overall solution around the trouble region. A comparison

of how this heuristic relates to the literature is given later in Section 4.6.

57

gocLL
.'k

sG'Fe sp_ce • 0"

•.%/_-\ \
'o'_/ ", \ _unsaFe

s_c_r_
_, ", _ spoce

Figure 4.4: Example with Non-Disjoint Safe Space and Multiple Searches

._.--"_'_

..,. _ I

o 4

J

w"

d _J

h

Figure 4.5: 3D Example of C-Space Traversal Heuristic

58

4.3 Vector Description of Heuristic

Given ®s and ®g, the start and goal positions in n-dimensional space, re-

spectively, the heuristic may be described in vector notation by the following ten

step procedure:

Step 1

Compute the direction vector from start to goal and normalize:

D= ®g - Os

IlOg - e,,ll

Step 2

Compute the number of discrete steps along D from start to goal:

®g-os II

where c = constant which determines discretization size

Step 3

Discretize from ®s to ®g in the direction of D until the first unsafe point is found.

Call the last safe point Oa:

®a =®s+j D
¢

where j = last integer in 1,2,...,n before an unsafe point is found

Step 4

Continue the discretization through the unsafe region until the next safe point is

found. Call that point Oh:

O b = ®s + k D
c

where k = first integer in j+2, j+3,...,n which yields a safe point

59

Step 5

Establish a set of nSD normalized search directions, ®SDi, orthogonal to D:

®SD i • D = 0

where i-l,2,...,nSD and • represents the dot product operator.

Calculation of search directions is discussed in Section 4.4.

Step 6

If this is a subsequent search, prioritize the search directions by grouping them

according to their dot product with the last successful search direction. A technique

for so prioritizing the search directions is described in Section 4.5. The number of

groups used will affect the emphasis given to continuing searches in the previously

successful direction. The purpose of the prioritization is to favor search directions

based on their component in the direction of the last successful search direction.

Step 7

Search from the midpoint of the unsafe region, (Oa + Ob)/2, in the (possibly prior-

itized) search directions until a safe point, designated as @c, is found. The search

technique shall depend upon whether this is the initial search or a subsequent search.

If this is the initial search, search the entire set of search directions for the

sage point nearest to the center of the trouble region by radiating out equal discrete

steps in each search direction until a safe point is found or until all directions exceed

a joint fimit and no safe point has been found.

If this is a subsequent search, search the highest priority group by radiating

out equal discrete steps in each search direction in that group until a safe point

is found or until it is determined that no safe point can be found in any of those

directions (such as a joint limit has been reached in each direction). If no safe point

6O

is found in the highestpriority groupthen repeat for the next highest priority group.

Repeat until a safe point is found or until all groupings of search directions have

been exhausted and no safe point has been found.

If no safe point could be found, reinitialize the global problem as from the last

point safely progressed to the global goal point and restart the entire procedure.

Step 8

Discretize along Oa to Oc and traverse as far along this segment as is safe. If this

entire segment is safely traversed goto Step 9. Otherwise goto Step 10.

Step 9

Progress toward all previous guide points in the opposite order in which they were

found, where guide points include not only previous intermediate goal points but

also the safe points found on the goal end of each unsafe region which invoked a

search. The global goal point is added as a final guide point. When progression

to a particular guide point is not entirely safe, that point is permanently dismissed

and progression is attempted toward the next guide point in the specified sequence.

The progression continues until an attempt has been made to progress to the global

goal point. If progression to the global goal point is safe, the global path planning

problem has been solved. Otherwise, redefine es as the last safe point in that

progression, ®g as the global goal point, and go to Step 1.

Step 10

Set Os equal to the last safe point, and Og equal to Oc, and go to Step 1.

4.3.1 Failure Condition

The heuristic fails when a call is made to Step 1 above with identical values

of ®s and ®g as a previous call. This can occur by one of the following two failure

modes:

61

1. Cycling occurs

2. The first search following reinitialization fails to locate a safe point.

A 2D example which results in the first failure mode is shown in Figure 4.6. In

spite of the possibility that the heuristic will fail, the results presented later in this

Figure 4.6: 2D Example for which Heuristic Fails by Cycling

thesis seem to indicate that the heuristic provides the capability to solve realistic

and potentially difficult path planning problems. The example shown in Figure 4.6

does involve a concave obstacle. The heuristic does appear to perform better with

convex obstacles however the complexity and nonlinearity of the task space to c-

space mapping makes it unlikely that even simple problems will result in a c-space

with strictly convex obstacles. In addition, the ability to attack the problem from

either direction (see discussion following Assumption 5 in Section 3.2) would mean

that a problem would have to induce cycling if approached from either direction in

order to result in inability to find a solution. As the dimensionality of the space

increases, the likelihood of actual, practical robot path planning problems possessing

62

deepconcavecavitiesof safec-spacein both directions (start toward goal and vice

versa)would intuitively seemto decrease.Sucha c-spaceshapewould probably not

occur for practical problems.

The cyclic failure mode is not sufficient to rule out the existenceof a solution

since this mode canoccur for a problem in which the searchdirections on the first

searchfollowing reinitialization happensto missall availablesafespacein the search

hyperplane.

4.4 Computing Search Directions

This sectiondiscussesmethodsfor computingsearchdirections asrequired for

Section 4.3 Step5.

Recall from abovethat the c-spacetraversalheuristic involves searching the

space orthogonal to and bisecting the unsafe region encountered in an attempted

traversal. For an n-dimensional space ® = (00,..., On), the n-1 dimensional hyper-

plane to be searched shall be orthogonal to direction vector D = (do,..., dn) and

shall include point ®c = (Oco,... ,Ocn), where ®c is the center point of the unsafe

segment. Thus, points to be considered in the search shall satisfy:

n

do(Oo-Oco)+dl(Ol-OCl)+...+dn(On-OCn)= _ di(Oi-8ci)=O (4.1)
i=1

From Equation 4.1, it can be seen that the search directions S = (0 - 0c) must be

orthogonal to D:

dos 0 + dl s 1 +... + dnsn =

n

dis i=S • D=0 (4.2)
i=1

Four procedures for determining search directions which satisfy Equation 4.2

were considered:

1. Searching a uniform grid

2. Radiating out along orthogonal basis vectors and their negatives.

63

3. Radiating out along a set of vectors made up of combinations of the n-1 free

variables in Equation 4.2.

4. Radiating out along uniformly distributed vectors made up of combinations

of orthogonal basis vectors.

These four procedures are discussed below. Selecting amongst the procedures for

implementation is then addressed in Section 4.4.1.

Procedure 1 Searching a uniform grid.

Searching a uniform grid would involve discretizing uniformly in the n - 1 dimen-

sional search space defined by Equation 4.2. Such an approach would clearly pro-

duce a very effective search from the standpoint that it would ensure finding a safe

point if one exists (within discretization limitations). However, this approach can

be quickly dismissed due to its computational complexity. For example, an n dof

problem discretized 100 points per axis (approximately every three degrees for a

typical revolute joint) would produce a grid containing 100(n- 1) points. For a nine

dof problem, this would result in 1016 points. Even if one million points could be

mapped every second (far from achievable today) it would take more than 300 years

to exhaustively perform one search of such a uniform grid!

Procedure 2 Radiating out along orthogonal basis vectors and their negatives.

A set of n- 1 n-dimensional linearly independent and orthogonal unit vectors satisfy-

ing Equation 4.2 can be computed. Such a set of vectors would constitute a basis for

the search space, i.e., each possible search direction could be represented as a linear

combination of the basis vectors. A set of orthogonal basis vectors will be uniformly

distributed in the space. Referring to the i th basis vector as B i = (b/i,...,bin),

64

the basis vectorsmust satisfy:

D.B i= _nk=ldkbik=0

Bi- By = 5ik5jk = o

IIBill = 1

i= 1,...,n- 1 (4.3)

i,j = 1,..., n - 1 and i _ j (4.4)

i=l,...,n--1 (4.5)

where D is the normal vector to the search space as per Equation 4.2, Equation 4.3

ensures that the basis vectors lie in the search hyperplane, and Equations 4.4 and 4.5

require all the basis vectors to be mutually orthogonal unit vectors.

There are, of course, an infinite number of orthogonal bases. Calculation of

search directions requires only one. The following set of vectors could be calculated

in the sequence shown and then normalized to yield one such orthogonal basis:

B 1 =

B 2 =

B 3 =

Bn_ 1 =

(1, hi,0,...,0)

(b11,P2, h2, 0- • • ,0)

(521,b29,p3,h3,0-.-,0)

:

(bn -21' bn -22'" " " ' bn-2n -2' Pn - 1, hn - 1)

(4.6)

where the Pi are chosen so that the B i and B i_ 1 satisfy Equation 4.4 and then the

h i are chosen so that the B i satisfy Equation 4.3.

Radiating out along the orthogonal basis vectors and their negatives would

amount to considering search directions of the form :t:Bi. This approach would

yield 2(n-1) search directions for an n dof problem (I6 for a nine dof problem).

Thus, the number of search directions using this procedure would increase linearly

with the number of dof, i.e., the complexity of searching with search directions based

on this procedure would be O(n). While this is an attractive feature it could be

expected to perform poorly for cooperating robot path planning problems since such

a reduced set of search vectors might miss the relatively little sake space available.

65

This expectation was verified when searchdirections basedon Procedure2 were

found to be ineffective even for very simple robot path planning problems. The

reasonfor discussionof this procedureis to illustrate that attempts were made to

utilize as small a set of searchdirections aspossible.

Procedure 3 Radiating out along a set of vectors made up of combinations of the

n-1 free variables in Equation 4.2.

The third approach attempts to bridge the gap between the intractability of

Procedure 1 and the oversimplification of Procedure 2. This procedure involves

allowing the n-1 independent variables to take on all combinations of 4-sd i and

solving for the dependent variable using Equation 4.2, where the sd i may be chosen

for each joint i as desired to vary the amount of motion being prescribed for joint i.

This approach will yield 2 n- 1 search directions for an n dof problem. While

this procedure results in tractable numbers of search directions (256 for a nine dof

problem), better performance may be possible using still more search directions.

A more extensive set of search directions could be computed by allowing the

n - 1 independent variables to take on all combinations of :t:sd i and 0 (except all

zeros) and solving for the dependent variable using Equation 4.2, where the sd i may

again be chosen for each joint i. This will result in 3(n-l) - I search directions for

an n dof problem (6560 for a 9 dof problem).

66

This procedurefor computingsearchdirections is equivalent to considering all

combinations of 4-sd i (and 0 for the more extensive set) times the following n - 1

vectors:

V1

V2

Vn- 1

dl sd,)=

= (0, sd2,0,., o, d2 sd2• , --77-)

= (0,. 0, sd._x, d,_-Isd,,-1
"" dr)

(4.7)

The potential disadvantage of this procedure is that the search directions will

not, in general, be uniformly distributed in the search space. The degree to which

coverage of the search space is non-uniform will depend upon the coefficients in

Equation 4.2. Uniform distribution will occur only in the special case where dn >>

di, for all i y_ n.

Procedure 4 Radiating out along uniformly distributed vectors made up of combi-

nations of orthogonal basis vectors.

The final approach for computing search directions, radiating out along uniformly

distributed vectors made up of combinations of orthogonal basis vectors, eliminates

the non-uniformity which results using using Procedure 3. A uniformly distributed

set of search directions could be computed by considering all combinations of 4-1

times the basis vectors. The basis vectors may be calculated per Equation 4.7. This

approach will yield 2n- 1 search directions for an n dof problem. Note that these

search directions each involve a component along all of the orthogonal basis vectors.

An even more extensive set of search directions could be computed by con-

sidering all combinations 4-1 and 0 (except all zeros) times the basis vectors. This

will yield 3 (n- 1) _ 1 search directions for an n dof problem (6560 for a nine dof

problem).

67

4.4.1 Selecting a Procedure

As mentioned above, Procedures 1 and 2 were eliminated from further con-

sideration due to their computational complexity and apparent inadequacy, respec-

tively.

Procedures 3 and 4 are similar in that they resultin tractable numbers of

search directionsand in that the search density willautomatically decrease with

increasing distance from the center of the trouble region. Since itis impractical

to have a uniform grid,itwould seem desirableto decrease search resolutionwith

distance from the center of the unsafe regionsince it is generally more desirable

to find a point closerto the center of that region in order to attempt an efficient

circumvention strategy.In other words, given a choice between failingto find a safe

point near the center of the unsafe region and failingto find a safe point far from

the center of the trouble region,one would choose the latter.

The differencesbetween Procedures 3 and 4 are:

• Procedure 3 produces a non-uniformly distributedset of search directions

whereas Procedure 4 guarantees uniform distribution.

• Procedure 3 allows for easy computation of search directions which favor cer-

tain joints whereas it is difficult to achieve such joint favoring using Proce-

dure 4 since the basis vectors will, in general, have components in all joint

directions.

The following example illustrates the uniform versus non-uniform distribution

effect. Consider a three dimensional problem (so the search space will be planar)

and let D = (2, 2, 1). The search directions that would be produced in the search

plane using Procedures 3 and 4 are shown in Figure 4.7, where 8all= 8d 2 for

Procedure 3. Figure 4.7 shows that Procedure 4 consistently produces uniformly

distributed search directions while Procedure 3 does not.

68

(a) Search d;rec't;ons

us;ng procedure 3

(b) Search dlrec_clons
us;ng prodecure 4

Figure 4.7: Procedure 3 vs Procedure 4

Experimentation was done with Procedures 3 and 4 for the cases implemented

in Chapter 6. In all four scenarios considered (single 6 dof, single 9 dof, cooperating

6 dof, and cooperating 9 dof) both procedures were successful in solving a variety of

problems. For more difficult problems, however, Procedure 4 produced noticeably

better results, often with fewer search directions. This was true in spite of the ability

to favor certain joints using Procedure 3.

As discussed in Chapter 6, search directions computed from the more extensive

set based on combinations of ±_d i and 0 times the basis vectors proved to be

practical and effective for six dof problems. For 12 dof problems (such as cooperating

nine dof robots), however, this procedure would produce 177146 search directions

and thus could potentially result in very long execution times. In the 12 dof case,

search directions computed from the smaller set based on combinations of "4-sd i

times the basis vectors (which yields 2048 for a 12 dof problem) proved to be a good

compromise between practicality and effectiveness.

4.5 Prioritizing Search Directions

This section discusses methods for prioritizing search directions as required for

Step 6 of Section 4.3.

69

Recall from abovethat the searchdirections are to be prioritized based on

their dot product with the previously successful search directions. Recall also that

the searches are conducted by looking at successively prioritized groups of search

directions. Two methods were considered for achieving this prioritization:

• Sorting the search directions

• Grouping the search directions into bins

The first method would simply involve sorting the entire list of search direc-

tions based on their dot products with the previously successful search direction.

Following the sorting, the search directions will be divided into groups of search di-

rections having similar priority. This type of sorting was found to be computation-

ally burdensome, unacceptably so for cases with several thousand search directions.

Grouping the search directions into bins involves much less computation than

sorting the entire list and would seem to provide similar performance to sorting

since the treatment of each search direction within a particular group differs only

in the order in which they are considered (and not in the relative depths considered

in each direction). Sorting into bins can be easily accomplished. If the dot product

of the i th search direction, Si, with the previously successful (or reference) search

direction, Sref, is dpi , and the maximum and minimum dot products are dpmax

and dprnin, respectively, then a set of search directions can be grouped into g equal

breadth groups (bins) by the following rule:

S iEbin(j) if j-1 < dp i-dprnin < J (4.8)
g - dprnaz -dPmin - g

It is this technique of bin sorting which is implemented in Chapter 6.

Another variation oh the prioritization method is to consider the past In'story of

successful search directions rather than simply considering the previous successful

search direction. This can be accomplished by computing dot products with the

7O

following reference search direction computed following a successful search:

sre / = Sre/, + (1 - (4.9)

where Sref' is the previous reference search direction, Ss is the most recent suc-

cessful search direction, and A E [0, 1) represents a forgetting factor which may be

used to vary the emphasis on the past history. With _ = O, the method results in

prioritizing exclusively based on the last successful search direction. The case)_ = 1

is disallowed since Sref would be invariant in that case.

Since in cooperating robot cases the role between leading robot and tracking

robot may change (as discussed in the next Chapter), an effective reference search

direction must be calculated for the tracking robot after each successful search. This

effective reference search direction is the search direction which would have yielded

the safe point found had the search been based on the tracking robot rather than

the leading robot.

4.6 Comparison of the Heuristic to the Literature

This heuristic is somewhat similar to many of the c-space graph search tech-

niques in that it is based around selective rather than exhaustive mapping of c-space.

Aside from that broad similarity, this heuristic is fundamentally and significantly

different from any of the approaches discussed in Chapter 2, with the most significant

difference stemming from the process used to guide the selective mapping process.

Nonetheless, it bares some some resemblance to Dupont's selective mapping [5],

Glavina's goal directed sliding [46], and Warren's vector based approar.h [58] (see

Section 2.1.1). Specific similarities and differences are discussed below.

The heuristic is similar to Dupont's approach in that both attempt to initially

follow a c-space vector from start to goal and employ heuristics to attempt to min-

imize the amount of mapping required to circumvent unsafe portions of the path.

The key difference is the type of heuristic used to attempt to traverse the trouble

71

regions. Interested only in single (redundant) robots, Dupont successfully used task

space heuristics to build paths from each end of the trouble region until a feasible

solution was found. The approach being presented here utilizes the c-space traversal

heuristic described above to guide the selective mapping process.

The resemblance to Glavina's approach is that both perform a search in the n-1

dimensional hyperplane containing a point which was unsafe in the straight traversal

between two points. Glavina's approach, however, performs those searches at the

beginning of the trouble region and is therefore subject to blindly following strategies

which look locally promising at the beginning of the trouble region but which may

not lead to traversal around that region. Glavina's approach does, however, have

the advantage over the heuristic being presented in this thesis in that it does not

introduce intermediate points which may be in unreachable regions of free space. It

is felt that that advantage does not outweigh the inherent inability of a completely

local strategy to adopt a promising global course. It is expected that Glavina's

approach would become excessively computationally intensive for problems with six

or more dof even if the safe c-space possessed only relatively shallow concavities.

The resemblance to Warren's approach is that both are graph search type and

"divide-and-conquer" in nature in that they attempt to identify an intermediate via

point by searching outward from the center of the trouble region. The resemblance

ends, however, when comparing the means used to identify a safe intermediate

point. As discussed in Section 2.1.1, Warren's approach projects a vector from the

centroid of the obstacle through the center of the unsafe region whereas the heuristic

presented in this thesis utilizes Structured searches of the hyperplane bisecting the

trouble region. Warren's approach, while relatively new and still under development,

has some potential difficulties:

• Obstacle centroids must be known in the space being considered (typically

c-space). This is computationally intractable for more than a few dof.

72

• If the centroid lies on or near the unsafe vector the resulting intermediate

point will lie at or near a previously found point thereby providing no new

information.

• The case for which no safe point is found along the vector is not considered.

As the dimensionality of the problem increases, the likelihood of finding a safe

point along one particular vector would decrease rapidly.

• The case of obtaining an intermediate point in an unreachable region of space

is not addressed.

These potential difficulties are all either addressed or eliminated by the ap-

proach being presented in this thesis.

Some of the potential fields approaches also adopt a "divide-and-conquer" style

solution to attempt to circumvent local minima difficulties. Some techniques used

in conjunction with potential fields approaches to locate intermediate trial points

(via points) include task space heuristics, uniform grids, randomized motions, and

use of potential functions (see Section 2.1.2). The heuristic presented herein does

not resemble any of these approaches beyond the fact that each involve a divide-

and-conquer style strategy.

CHAPTER 5

Utilizing the Heuristic for Robot Path Planning

This chapter explains how the divide-and-conquer c-space traversal heuristic pre-

sented in the preceding chapter may be utilized to solve single and cooperating

robot path planning problems. This chapter is organized into three main sections:

• Single Robot Path Planning

• Cooperating Robot Path Planning

• String Tightening

• Handling Constrained Motions

Sections 5.1 and 5.2 discuss the utilization of the heuristic for single and coop-

erating robot path planning problems, respectively. A "string tightening" method to

improve the efficiency of a path found by the planner is presented in Section 5.3. The

implementation of the path planning strategy for particular single and cooperating

robots is deferred until the following chapter.

5.1 Single Robot Path Planning

The single n dof robot path planning problem as defined in Section 3.4 can

be addressed by direct application of the heuristic presented in Chapter 4 where

the n dimensional space to be traversed is simply the configuration space of the n

dof robot. C-space points are mapped only as needed by updating the geometric

models of the robot links and the payload and performing interference detections as

required to determine whether or not the specified joint variables correspond to a

collision free configuration.

73

74

In all cases,the parameterc which determinesstep size (seeStep 2 of Sec-

tion 4.3) should be establishedfor eachtask such that the largest possiblestep is

many times smaller than the step size necessary for thinnest part of the robot/payload

to step through the thinnest obstacle in one step.

Some potential issues which arise are:

• Handling robots with mixed joint types

• Joint limit problems

• Choosing A

• Choosing number of bins

• Multiple robot configurations

• Singularity concerns

These issues are addressed below.

•5.1.1 Handling Robots with Mixed Joint Types

Mixed unit concerns for robots with mixed joint types (some prismatic and

some revolute) may be eliminated by linearly mapping each joint's actual range onto

the interval [0, 1], i.e.:

o - q.- q"" (5.1)
q,aa._ -- qmi.

where qa, qmin, and qmaz represent the actual joint value, the lower joint limit, and

the upper joint limit, respectively, all in identical units for each joint. Robots with

revolute joints having no joint limits may be treated by replacing the denominator

on the right hand side of Equation 5.1 with 360 degrees (27r radians). No multiple

rotations are permitted.

75

5.1.2 Joint Limit Problems

The joint limit problem is handled inherently since any point which would

violate a joint limit is simply mapped as unsafe. In addition, the prioritization

of search directions allows a reversal to take place when a potential joint limit is

encountered. The prioritization strategy will then favor the direction away from the

joint limit even after the immediate danger of hitting a joint limit is avoided. This

reversal tendency is more global than the technique often employed with potential

fields methods whereby a joint is repelled if it is in proximity to a joint limit.

5.1.3 Choosing

Recall from Equation 4.9 that prioritization of search directions utilizes a pa-

rameter denoted as _. Experimentation with the test cases in Chapter 6 indicates

that small ,k (near or equal to 0) provides the most robust path planner from the

standpoint of finding a path for difficult problems, particularly for single robot prob-

lems. Path efficiency, however, appears to decrease with decreasing _. In addition,

small ,k does not perform particularly well for cooperating robot cases. This is likely

partially due to the swapping of roles between the leading and tracking robot. The

values used for _ for the cases implemented will be presented in Chapter 6.

5.1.4 Choosing Number of Bins

Recall from Equation 4.8 that prioritized searches consider search directions

grouped into bins. For the wide variety of problems considered, either 5 or 10 bins

proved successful. In most cases, any number of bins in the 5 to 10 range would

yield a solution although the path efficiency may decrease with an increase in the

number of bins. Fewer than 5 bins did not provide robust performance and more

than about 20 bins led to very inefficient paths (if a solution could even be found).

76

5.1.5 Multiple Robot Configurations

Recall from the problem definition in Chapter 3 that the start and goal joint

angles are given. In addition, note that the path planner operates exclusively in

c-space. As a result, multiple robot configurations which achieve identical end ef-

fector position/orientation need not be explicitly considered by the path planner.

5.1.6 Singularity Concerns

There are no singularity concerns using this approach for single robot path

planning since singularities are a task space phenomena whereas the path planning

approach is strictly configuration space based.

5.2 Cooperating Robot Path Planning

The two cooperating arm path planning problem is essentially equivalent to

the single arm problem with the addition of the closure constraint, Equation 3.3.

The closure constraint requires that, in order for a point in the configuration space of

the one robot to be considered safe, it must correspond to a reachable and collision

free configuration of the second robot. Thus, the basic concept for attacking the

cooperating robot path planning problem is to apply the c-space traversal heuristic

to one of the robots, referred to herein as the lead robot, with the other robot,

referred to herein as the tracking robot, acting as a constraint. For example, the

straight line path in c-space is determined for the lead robot and an attempt is

made to traverse from the start position towards the goal position. If this attempted

traversal is not entirely safe a search is conducted in the c-space of the lead robot

with due consideration to the tracking robot. When the lead robot reaches the global

goal position the entire path planning problem will have been solved. Mapping a

particularpoint in the c-space of the lead robot involvesverifyingthat the closure

constraint can be met, updating geometric models of the robot linksand payload,

77

and performing the required interference detection calculations.

The above rather simplistic conceptual explanation of applying the c-space

traversal algorithm to two cooperating robots neglects the following potential issues:

• Handling robots with mixed joint types

• Joint limit problems

• Choosing a lead robot

• Handling cooperating redundant robots

• Multiple robot configurations

• Singularity concerns

The first two of these issues are identical for the cooperating robot case as for the

single robot case discussed in Section 5.1. The remainder of these issues are discussed

below.

5.2.1 Choosing a Lead Robot

The simplest way to choose a lead robot would be to always choose the same

robot. This simple approach can be dismissed for the followingreasons:

• A small change in the configurationof the lead robot might correspond to a

much largerchange in the configurationof the tracking robot thereby making it

difficultto discretizethe path to ensure that itiscollisionfree.In an extreme

case, it is possible that the lead robot may have the same start and goal

positionsfor radicallydifferentstart and goal configurationsof the tracking

robot (such as an arm configurationchange).

• It would not allow the trackingrobot to easilychange configurationsincethis

would typicallyinvolve passing the tracking robot through a singularity.It

78

ishighly unlikelythat the traversalheuristicwould happen to prescribe lead

robot positionswhich would allow the trackingrobot to change configuration.

These difficultiesmay be eliminated by choosing the lead robot foreach callto

the heuristicbased on relativedistances(inc-space)between startand goal positions

of each of the robots. This approach can be represented as follows:

if [[el, -- ®1#[[< r [[®2, -- 0"2g[[then robot 1 leads (5.2)

otherwise robot 2 leads

where r > 1 represents a relative weighting between the two robots. Setting r = 1

would result in simply choosing the lead robot as the one with the greatest distance

to travel. Equation 5.2 is evaluated to select the lead robot for each segment of the

path where the s and g subscripts represent not the global start and goal positions

but rather the start and goal positions for the particular segment of the path being

addressed.

Experimentation with the cases in Chapter 6 revealed that oscillation tends

to occur using this method for r = 1. These oscillations resembled a tug-of-war

between the two robots.

Better path planner performance was achieved by choosing the lead robot

based on relative c-space distances with consideration to past history. This approach

favors the robot which led the previous segment unless the other robot has some

multiple r further to go, i.e.:

if robot i had led robot j and

if lie.i, - ej ll < ,- Ilei. - ei, II then robot i leads

otherwise robot j leads

(5.s)

where r > 1 represents a relative weighting by which the distance for the formerly

tracking robot must exceed the distance for the formerly leading robot before the

....

79

roles are reversed. Essentially, this method incorporates some hysteresis into the

determination of the leading robot.

This approach was used to select the lead robot for the cases implemented in

Chapter 6.

5.2.2 Handling Cooperating Redundant Robots

The implementation of the c-space traversal heuristic for cooperating robots

as described in Section 5.2 requires that the closure constraint be checked for the

tracking robot. Since each point in the c-space of the lead robot defines a position

of the end effector of the tracking robot, inverse kinematics must be applied to

determine if and how the tracking robot can reach a prescribed position/orientation.

For cooperating non-redundant robots, the reachability of the second robot can

be easily determined using inverse kinematics which are one-to-one. Checking the

closure constraint for cooperating redundant robots, however, can be potentially

difficult since the inverse kinematics are not one-to-one. Two possible methods of

addressing the cooperating redundant robot path planning problem axe:

• Applying the heuristic directly to one of the robots

• Applying the heuristic to a composite c-space with dimensionaiity equal to

total number of degrees of freedom for the cooperating system

These two approaches are discussed below.

5.2.2.1 Applying the Heuristic Directly to One of the Robots

Application of the procedure directly to one of the robots would require some

means for performing inverse kinematics on the redundant tracking robot. This in-

verse kinematics problem could be handled either by iterative testing of a number of

prescribed positions for all bttt sixof the joints or by utilization of a potential fields

8O

based inverse kinematics solution. Iterative testing would likely prove very compu-

tationally expensive. A potential fields based inverse kinematic solution would be

computationally tractable. Such an approach, however, has an intuitive disadvan-

tage, namely that it does not treat all the free variables of the path planning problem

in the same fashion. In implementation terms, this means that the treatment of the

tracking robot would not contribute significantly to the overall strategy for solving

the global cooperating robot path planning problem.

In attempt to further clarify this point, consider an example for which a po-

tential fields inverse kinematics solution is used for the tracking robot. The inverse

kinematics applied to each point prescribed by the lead robot must consider the

position of the tracking robot at the previous point. This is necessary to avoid a

discontinuous path for the tracking robot. The difficulty arises when the lead robot

prescribes a point in the progression for which the inverse kinematics fail for the

tracking robot. That failure of the inverse kinematics is contingent upon the path

of the tracking robot up to the point before failure. Since no global path planning

strategy was incorporated into the inverse kinematics of the tracking robot, it seems

likely that better results might be obtained using a different strategy for selecting

the configuration of the tracking robot.

5.2.2.2 Applying the Heuristic to a Composite C-Space

This technique for considering cooperating redundant robots was developed to

enable the heuristic to be applied to a space with dimensionality equal to the effective

number of dof for a cooperating system of robots. To illustrate this method, consider

an n 1 dof robot (Robot I) working cooperatively with an n 2 dof robot (Robot 2),

n i > 6. The mobility of the cooperating system is m -- n 1 +n2-6 per Equation 1.1.

The two robots can be conceptually replaced with an m dof lead robot and a six

dof tracking robot by treating n2-6 links of Robot 2 as if they belong to Robot I.

81

In this manner, the c-space traversal heuristic can be applied to the mD c-space

of the composite lead robot while one-to-one inverse kinematics can be applied to

determine if the tracking robot can satisfy the closure constraint.

The main concern regarding this approach is that it results in increased di-

mensionality of the space which must be searched when implementing the c-space

traversai heuristic. This increased dimensionality does, however, accurately reflect

the problem complexity and is therefore considered reasonable. It also seems rea-

sonable to expect that the traversal heuristic would handle the extra dof in a more

logical fashion than considering them in the inverse kinematics of the tracking robot.

Application of this procedure to cooperating nine dof robots would amount

to considering a twelve dof composite robot being tracked by a six dof robot. The

heuristic would then be applied to the 12D c-space of the composite robot. Results

presented in Chapter 6 illustrate that this technique is a practical and effective way

to address the path planning problem for cooperating nine dof robots.

A similar approach could be applied to cooperating robots with less than six

degrees of freedom. For example, consider two five dof manipulators. Since the

inverse kinematics for the five dof robot would be overdetermined (i.e., not every

position and orientation would have a solution), it would appear more effective to

plan based on, for example, the first four joints of a lead robot. The lead robot's

remaining joint and the five joints of the tracking robot would effectively result in a

six degree of freedom robot with one-to-one inverse kinematics. In this case, such aa

approach would actually reduce the dimensionality of the search space (from five to

four) as compared to direct application of the heuristic to one of the robots. Once

again, the heuristic is applied to a space with dimensionality equal to the actual

mobility of the cooperating system.:

_ 82

5.2.3 Multiple Robot Configurations

In general, a six dof robot will possess a finite number of distinct robot con-

figurations which achieve identical end effector position/orientation (such as elbow

up or elbow down for a Puma). This situation is represented mathematically in

Equation 3.5. Multiple configurations are handled inherently for the lead robot just

as in the single robot case. However, special consideration is required to address

this issue for the tracking robot. The following set of rules address this issue:

1. Configurations must be defined such that, for the robot in any one configu-

ration, an infinitesimal change in end effector position/orientation will always

correspond to an infinitesimal change in the corresponding joint angles.

2. During progressions forward through safe space (Steps 3 and 9 of Section 4.3),

the tracking robot shall maintain the same configuration as it had at the start

of that segment of the path.

3. While mapping through unsafe space in search of a safe point (Step 4 of

Section 4.3), only the configuration of the tracking robot at the goal position

of the current segment of the path shall be considered.

4. While conducting searches (Step 7 of Section 4.3), all possible configurations

of the tracking robot shall be considered.

These rules will enable full use of all available configurations while prohibiting dis-

continuous motions of the tracking robot for smooth motions of the leading robot.

5.2.4 Singularity Concerns

Robot arm degeneracy at singularities is handled inherently by the path plan-

ning method. For the lead robot, only singularity-free c-space is considered. For

the tracking robot, any region prescribed by the lead robot which cannot be tracked

83

by the other robot is mappedout as an unsaferegion. This combined with the

ability to swap roles between the leading and tracking robots results in a planner

which inherently handles singularity concerns for cooperating robots. This means

of handling singularities does not attempt to physically avoid singular configura-

tions but rather allows either robot to pass through singularities as necessary when

attempting to solve the path planning problem.

5.3 String Tightening

The path planning procedure presented thus far has a principle objective of

finding a feasible solution. As a result, the paths found will typically be sub-optimal

in some sense and it should be possible to modify a feasible path found by the planner

to produce a better one. This process of path modification may be referred to as

string tightening. This section presents a brief history of approaches used for string

tightening and then presents an approach which can be utilized for string tightening

paths found for two cooperating robots.

5.3.1 History of Smoothing

Once a collision free path has been found by a robot path planner, it can be

further optimized by numerical methods. A commonly used cost function aims to

minimize the length of the path while incorporating safety clearances from obstacles.

The resulting performance index to be minimized can be expressed as:

[,of)de (5.4)
W

J = (i +

where D(®) is the minimum distance between the robot and obstacles, w is a

weighting factor, and the integral is taken over all configurations connecting Os

and ®g. Polytope methods seem to be the current state of the art for computing

robot to obstacle distances. Bryson and Ho [96] note that several numerical methods

.-. ,

84

may be used to find a path with minimum J using any feasible path as an initial

guess. Simple gradient methods perform reasonably well for this purpose. The

resulting path, however, is only optimal in the vicinity of the initial guess.

An alternate technique for path smoothing which also attempts to shorten

a path while maintaining due safety clearances is Thorpe's [97] path relaxation

technique. This process begins with a mobile robot path consisting of straight line

connections between a sequence of nodes. The relaxation involves moving one node

at a time in either direction perpendicular to the line connecting the preceding and

following nodes in order to minimize the cost of traversing between the three nodes.

The cost function is similar to Equation 5.4 since it includes length of path segment

with a penalty for proximity to obstacles or unmapped (unknown) regions. Since

moving a node may affect its neighbors, the process is repeated until no nodes move

more than some small tolerance.

Another technique which can be used to smooth paths, avoid collisions, and

move paths away from objects is based on potential fields. Krogh [74] presents one

such approach. Krogh uses sensory measurements of obstacles as feedback during

execution of paths planned with another algorithm. This feedback can help to

smooth jagged paths and to steer the path away from obstacles.

5.3.2 String Tightening Algorithm

This section presents a method for improving upon a path produced by the

cooperating robot path planner. Recall from Chapter 3 that the path planner output

consists of a sequence of closely spaced knot points for both robots along a feasible

and collision free path.

85

5.3.2.1 Measure of Goodness

A variety of possible criterion may be used to evaluate the quality of a path.

For string tightening purposes, the goodness of a path may be measured by the sum

of the lengths of the joint space trajectories for the two cooperating robots. Since

the path planner produces discretized paths for both robots, the objective during

string tightening is to reduce the following cost function:

2 N lnr
L N = Y_ _ _ (Orj(i + 1)-Orj(i)) 2 (5.5)

r=li=l j=l

where:

L N = the sum of the joint space trajectory lengths

N = number of knot points in path

r --- robot identifier

nr = number of dof for robot r

Orj(i) = i th knot point for robot r joint j

If the original path is considered to be a string passing through the knot

points in the joint space of each of the robots, then the objective for improving

upon the path is to shorten the sum of the string lengths while maintaining the

same endpoints. Hence the name string tightening as suggested by Dupont [5].

The tightening algorithm which was implemented involves examining each

sequence of three adjacent knot points and performing whichever of the three options

below produces the most desirable effect on LN:

1. Make no changes to the knot points.

2. Modify the second knot point for robot 1 so that the three knot points are

straight in the joint space of robot 1 (if not already so).

86

3. Modify the second knot point for robot 2 so that the three knot points are

straightin the jointspace of robot 2 (ifnot already so).

The feasibility of options 2 and 3 must be determined with consideration to

closure and collisions. The procedure described in Section 5.2 can again be used to

simplify the question of closure for cooperating redundant robots. The incremen-

tal effect which each of the above options will have on L_ can be assessed using

Equation 5.5 over the appropriate three knot point segment.

These local adjustments are continued until no significant improvement can

be obtained from further adjustments.

A conceptual illustration of the string tightening algorithm for cooperating

robots is shown in Figure 5.1. An initial three knot point segment for the two robots

is shown in Figure 5.1a. These three knot points are a portion of a much longer

many knot point path. Figure 5.1b and c show the effect of options 2 and 3, above.

In this example, option 2 (moving the second knot point of robot 1 in line with

its neighbors) produces the most significant reduction in path length. Thus, this

iteration would move each robot's second knot point to their positions in Figure 5.1b.

(a) Original knot points

1i+ 2 (_ 2i+2

(b) Pull Robot 1 tight (c) Pull Robot 2 tight

Figure 5.1: Local Effect During String Tightening

For single robot problems, Equation 5.5 need only be evaluated for one robot

and the options are reduced to two:

87

1. Make no changes to the knot points.

2. Modify the second knot point so that the three knot points are straight in the

robot's joint space (if not already so).

5.3.2.2 Limitations of the String Tightening Algorithm

Because this string tightening method involves a discretized approximation

to continuous deformation, the tightened path may still be far from optimal. For

example, consider Figure 5.2. A safe path may be found as shown in Figure 5.2a.

A shorter path found by continuous deformation of the original path is shown in

Figure 5.2b. However, this path is suboptimal as shown by Figure 5.2c.

(a) Path Found

by ptanner

(b) Path after

string tightening

. ".

goat

(c) Shorter path

goes unFound

Figure 5.2: String Tightening May Not Produce Optimal Path

One disadvantage of the approach is that the shortened paths tend to provide

very little obstacle clearance. This property is generally more acceptable for ma-

nipulators than for mobile robots because the manipulator environment is generally

accurately known and the manipulator control is typically precise. Possible means

for addressing this limitation are discussed in Section 8.2.1.

This string tightening algorithm is also unable to find any-paths which would

require temporary lengthening of the path in order to ultimately achieve a better

path.

88

5.3.3 Comparison to Other Path Smoothing Approaches

This approach is very similar to Thorpe's approach discussed in Section 5.3.1

where the differences are as follows:

• Cooperating robots are considered.

• The cost function is c-space distance only, whereas Thorpe includes distance

from obstacles in the cost function.

• The sequences of points are closely spaced knot points, whereas Thorpe's node

points may be far apart.

,5.4 Handling Constrained Motions

Earlier, it was assumed that the end effector motion between the start and

goal positions may be arbitrary. Though this is a valid assumption for the typical

robot path planning problem in free space, there are cases where contact between

the payload and an obstacle may lead to constrained rather than arbitrary end

effector motion. For example, the payload may come into planar contact with a

table surface. As such, the end effector motion is confined to 3 dof (two translations

and a rotation) as opposed to 6 dof. Although such cases are not considered in

this thesis, the heuristic could be utilized to solve such problems by applying the

heuristic in the task space defined by the reduced degrees of freedom rather than in

the joint space of the robot. The robot must be away from singularities in order for

such an approach to be effective.

CHAPTER 6

Implementation and Results

This chapter presents the implementation details and results of applying the path

planning method described in the preceding chapters to the following single and

cooperating robot scenarios:

• The CIRSSE Testbed (single 6 dof, single 9 dof, cooperating 6 dof, and coop-

erating 9 dof cases)

• The Automated Structure Assembly Lab at NASA Langley (6 dof case)

• Cooperating Pumas Assemble a Truss Structure

The specifics of each of these implementations and sample results are presented

in sections which follow. First, some points common to all of these implementations

are presented in the next section.

6.1 Characteristics Common to All Implementations

All of the implementations that will be discussed in this chapter have the

following common characteristics:

• Heuristic is applied generically

• Geometric modeling is done with polytopes.

• A hierarchical interference detection scheme is used.

• Paths may be visually simulated using CimStation.

• The programs are written in C.

These characteristics are discussed below.

89

90 '

6.1.1 Heuristic is Applied Generically

All of the cases invoke the c-space traversalheuristicin its completely gen-

eral form. In other words, in no case are task or hardware specificassumptions or

modifications utilized.Search directioncomputation is always done strictlymath-

ematically. The abilityto directlyapply the heuristicgenericallyto a varietyof

problems suggests that the planning methodology presented herein could be quickly

and effectivelyapplied to hardware or tasks not addressed herein.

6.1.2 Geometric Modeling with Polytopes

The geometric modeling scheme implemented to enable interference detection

utilizes polytope models of the robot links, payload, and obstacles in the workspace.

Details of the modeling may be found in [6]. A polytope is a set of points whose

convex hull (the smallest volume which encloses all points) describes the object

being represented. The polytope representation incorporates a radius which can be

used to achieve a safety margin. A few simple 2D polytopes are shown in Figure 6.1.

In 3D, a two vertice polytope would correspond to a cylinder with hemispherical

end caps, where the radius of the cylinder and of the end caps is specified by the

polytope radius. A 3D block can be made using eight vertices and a radius of zero.

The polytope representation scheme was chosen because it permits accurate

modeling of the robots and typical obstacles in the workcell while enabling relatively

fast interference checking. Although each polytope represents a convex object, con-

cave objects may be easily modeled as several distinct convex polytopes.

6.1.3 Hierarchical Interference Detection

Collision checking is currently being done in a two level hierarchy. First, spher-

ical approximations for each pair of potentially colliding objects are examined. If

the spherical approximations do not intersect then there is no possibility of collision

91

__t_.__.@

Iwl

J

r=0

Figure 6.1: Some 2D Polytopes

between the pair of objects under consideration. If the spherical approximations

do intersect then a polytope distance calculation routine is invoked to determine

whether or not the two objects intersect (collide). The polytope routines being used

were provided by Hamlin and Kelley [98, 99]. The reason for the spherical approxi-

mation level of the hierarchy is to reduce the number of computationally expensive

calls to the polytope distance calculation routine.

Mapping a point in c-space thus reduces to the following steps:

1. Verifying the closure constraint and determining the configuration of the track-

ing robot (not necessary in single robot cases).

2. Updating the coordinates of the sphere centers and polytope vertices based on

the joint angles of the point being mapped.

3. Performing interference detection per the hierarchy discussed above.

The interference detection routine for the path planner simply needs to deter-

mine a yes or a no regarding collision. This enables use of faster routines than would

be required if the path planner needed to know distances and directions between

pairs of objects.

92

6.1.4 Animation of Paths

Paths found by the path planner may be visually animated using any suitable

robot simulation package. We use CimStation, a commercially available package,

for path animation purposes. The interface between the path planning programs

and CimStation is a file storing the sequence of knot points determined by the path

planner. CimStation then replays the sequence to animate the path found by the

planner. The CimStation workcell model must, of course, be consistent with the

world model given to the path planner. The CimStation model of the CIRSSE

testbed used for this work was developed by Hron [100]. The CimStation model of

NASA Langley's ASAL lab was provided to us by NASA Langley. The model used

for the cooperating Pumas assembling a truss is an edited version of the model of

the CIRSSE testbed.

For CIRSSE testbed cases, path planning program output may also be run

on the actual hardware by first applying a trajectory generation routine to the

planner output and then running the resulting trajectory in the typical fashion.

For cooperating robot cases, path execution in this manner requires use of active

compliance on one of the two end effectors at any given time to maintain acceptable

internal forces on the payload. Further work to be done in the area of integrating

the path planner into the CIRSSE testbed is discussed in Section 8.2.2.

CimStation was also found to be very useful in defining the start and goal

joint angles for path planning problems, particularly in the cooperating robot case.

Due to the tremendous loss of workspace due to the closure constraint, it is easy

to inadvertently define start and goal positions of the robot which are feasible but

which probably have no path which can connect them. CimStation may be used

to view different robot configurations and to quickly determine the feasibility of a

robot reaching a particular pose. The various robot configurations may be tried as

input to the path planner until a solution is found.

93

6.1.5 Description of Programs

All of the path planning programs were implemented in the C programming

language. Portions of the program utilize code developed by Schima [6]. The path

planning programs are similar for all cases considered. A sample flowchart is shown

in Figure 6.2.

Program inputs and outputs are per the problem statements in Chapter 3.

Additional output is included to document and evaluate the performance of the

path planner. This output includes the following:

Ns

_L/L

LI

Nsph

Npoly

tpath

ttight

tcc

tpoly

trot

= Number of knot points in path.

= Number of searches required.

= Percent reduction in path length due to string tightening.

= Final path length after string tightening (Eqn. 5.5).

Note that this is dimensionless since joints are

scaled using Equation 5.1

= Calls to spherical interference check function.

= Calls to polytope interference detection function.

= Time to find safe path.

= Time to string tighten.

= Time spent collision checking (both phases).

= Time spent in polytope phase of collision detection.

= Total time.

The condition used to terminate string tightening is that a knot point will be

moved only if doing so will reduce the distance over the three knot point segment

centered at that point by at least 0.5 percent.

94

n Read in wodd modeland path i_anner da_.

1

INo
Traverse from I

ITs towardrg I

Iraversa]

safe?

YES

Progress 1o poinls

on slack

YES

= las| sale point goal

achieved?

YES

Figure 6.2: Flowchart of Path Planning Program

95

6.2 CIRSSE Test, bed

The path planning method described herein has been implemented for the

robotic testbed system of the Center for Intelligent Robotic Systems for Space Ex-

plor.ation (CIRSSE) at Rensselaer Polytechnic Institute (RPI). The CIRSSE testbed,

shown earlier in Figure 1.2, consists of two 6R Puma 560's, each of which rides on a

separate Aronson 1P-2S platform. The kinematic parameters including joint limits

may be found in [101] and in Appendix A.

The methods described in this thesis have been implemented for four different

CIRSSE testbed scenarios:

• Single Puma

• Single 9 dof robot (platform plus Puma)

• Cooperating Pumas

• Cooperating 9 dof robots

Numerous path planning problems were contrived for these different scenarios

in attempt to illustrate the effectiveness of the path planner for various potentially

difficult path planning problems. Implementation details and sample results for

each of the scenarios are presented below. Applications of the path planner to more

practical path planning problems are discussed later in Sections 6.3 and 6.4. Except

as noted for the case specifically illustrating the effect of string tightening, all paths

illustrated herein are the final path obtained after string tightening. Start and

goal joint angles and obstacle definitions for the included CIRSSE testbed examples

(Examples 1 through 4) are provided in Appendix B.

96

6.2.1 Single Puma 560

The path planner was implementedfor such a single Puma path planning

problem. The specificparametersof the implementation areas follows:

1
c - 200 step size (See Step 2 of Section 4.3)

NSD = 242 search directions per Procedure 4

g = 10 bins (see Equation 4.8)

A = 0.5 forgetting factor (See Equation 4.9)

6.2.1.1 Example 1

A sample path found by the single Puma path planner is shown in Figure 6.3.

Figure 6.4 provides a top and side view of the start configuration. A trace of the

path followed by the payload is shown in Figure 6.5.

The results for this example are summarized in Table 6.1. The variables in

the Table are as defined in Section 6.1. As shown in the table, the total time

required to find a path and perform string tightening was just over three minutes.

Approximately 60% of the total time involved finding a safe path with the remaining

time utilized for string tightening.

The payload for this example is a 0.7 meter long strut, a scale version of the

type which might be used to construct space structures such as Space Station Free-

dom. A long, thin payload such as this highlights the need for consideration to

rotational as well as translational degrees of freedom. This path planning problem

is potentially difficult because limits on joint 1 prohibit a simple counterclockwise

rotation (viewed from above) which would move the payload from start to goal. As

a result, the prominent motion is clockwise and escaping from the box-like obstacle

near the start requires some backtracking to remove the strut from within the box.

Once the strut is out of the box there is also potential for allowing the strut back

97

Ns
AL/L

Lf

Nsph
Npoly

tpath

tti.qht

tcc

tpoly

ttot

Single Puma

(Example 1)

717

112

20.2

3.04

745K

128K

114 sec

71

101

69

185

Coop. Pumas

(Example 2)

524

154

16.4

2.14

1.72M

390K

560

38

283

201

Single 9 DOF

(Example 3)

1124

42

8.4

9.35

1.60M

94.5K

158

185

118

52

598 343

Coop. 9 DOF

(Example 4)

1307

78

14.2

14.27

3.34M

189.5K

167

384

247

115

551

Table 6.1: Summary of Results for CIRSSE Testbed Examples (times

in seconds)

into the box. Similarly, achieving the goal position requires passing the triangular

obstacle, aligning the strut for insertion between the sides of the triangle, and per-

forming that insertion. This example also illustrates the fact that concave objects

such as the box and the triangle may be easily modeled as several distinct convex

polytopes whose combined effect defines a concave task space object.

98

(a) Start Position

(c)

(e)

(b)

(d)

(f) Goal Position

Figure 6.3: Sample Results for Single Puma (Example 1)

99

(a) top view (b) side view

Figure 6.4: Start Configuration for Example 1

Figure 6.5: Trace of Payload Path for Example 1

I00

6.2.2 Single 9 DOF Robot

The path planner was implemented for a single nine dof robot consisting of one

of the testbed's platforms plus the attached Puma. The specific parameters of the

implementation are identical to those presented in Section 6.2.1 for a single Puma

except for the number of search directions. In the single 9 dof case, the number of

search directions is:

NSD = 6560 search directions

6.2.2.1 Example 2

A sample path found by the single 9 dof path planner is shown in Figure 6.6.

This problem is identical to the problem in Example 1 except that the extra three

dof of the platform may be utilized. The path found by the planner uses the platform

translation and tilt capabilities to aid in obstacle avoidance.

The results for this example are summarized in Table 6.1. As shown in the

table, the total time required to find a path and perform string tightening was

just under ten minutes. The results also show that the redundancy was utilized to

produce a path which was approximately 50% shorter than the path obtained for

the Puma alone. Over 90% of the total time involved finding a safe path with the

remainder of the time utilized for string tightening.

I01

(a) Start Position

(c)

(e)

b_

(d)

Q

(f) Goal Position

Figure 6.6: Sample Results for Single 9 DOF Robot (Example 2)

102

6.2.3 Cooperating Puma 560's

Addressed in this implementation is the path planning problem for the two

CIRSSE testbed Pumas working cooperatively. Thus, the platforms may be used

to initially position the two Pumas but are stationary throughout the planning

problem. The specific parameters of the implementation are as follows:

1 step size
c = 30-"0

NSD = 242 search directions

g = 5 bins

-- 0.5 forgetting factor

r = 4 (See Equation 5.3)

6.2.3.1 Example 3

This example involves a space containing six obstacles arranged in a maze-like

fashion. The path planner successfully finds the path shown in Figure 6.7 which

traverses from start to goal with no collisions. The payload is a 3cm x 3cm x 110

cm box. The clearance between the long horizontal obstacles is I5cm. Figure 6.8

provides a top and side view of the start configuration. Similarly, Figure 6.9 provides

a top and side view of the goal configuration.

The results for this example are summarized in Table 6.1. As shown in the

table, the total time required to find a path and perform string tightening was under

six minutes. Approximately 46% of the total time involved finding a safe path with

the remaining time utilized for string tightening.

This example seems to reflect the maximum level of difficulty which the coop-

erating Puma path planner as presently implemented can solve within a reasonable

amount of time. For example, if the obstacle near the goal end of the passageway

between the two long obstacles is lengthened downward by 0.1 meters the planner

I03

fails to find a path (when allowed to try for over an hour). This failure to find a

solution occurs even though it is apparent to the user that a solution does exist.

Example 3 is also a path planning problem which the planner cannot solve if the

start and goal positions are interchanged. In that case the planner begins by going

below the open passageway between the long obstacles and then fails to find a path

which can circumvent the lowest obstacle. Once in this position, it seems likely

that a planner would need to resort to an impractical exhaustive mapping of a huge

concavity before determining that significant backtracking would need to take place

to find the opening to the passageway.

When difficulty was experienced with the cooperating robot path planner (co-

operating 6 and cooperating 9 dof case), the source of the difficulty virtually always

turned out to be in the choice of the start and goal robot configurations (i.e., the

start and goal joint angles). Such difficulties appear difficult to address intuitively

but are easily addressed brute force by trying all combinations of feasible Puma

configurations at the start and goal positions. This typically resulted in at least one

• suitable problem definition for which the planner was successful.

104

(a) Start Position

(c)

(b)

(d)

(e)

U

E

(f) Goal Position

Figure 6.7: Sample Results for Cooperating Pumas (Example 3)

105

(a) top view (b) sideview

b

Figure 6.8: Start Configuration for Example 3

(a) top view (b) side view

Figure 6.9: Goal Configuration for Example 3

106

6.2.4 Cooperating 9 DOF Robots

Addressed in this implementation is the path planning problem for the two 9

DOF CIRSSE testbed robots working cooperatively. The specific parameters of the

implementation are as follows:

1

c = 15-"0 step size

NSD = 2048 search directions

g = 10 bins

A = 0.5 forgetting factor

r = 10

Recall from Chapter 5 that the c-space traversal heuristic is applied in a 12D

space for cooperating 9 dof path planning problems. As a result, the complexity

of the cooperating 9 dof robot path planning problem is immensely higher than

the complexity of the cooperating 6 dof. This increased complexity would result in

3 II _ 1 or 177146 search directions using Procedure 4. Since such a number of search

directions would be computationally impractical, this implementation utilized the

reduced set considering all combination of :t:l times the basis vectors. This results

in 211 or 2048 search directions.

6.2.4.1 Example 4

A sample path found by the cooperating 9 dof robot path planner is shown in

Figure 6.10. The start and goal positions appear in the upper left and lower right,

respectively. Figures 6.11 and 6.12 provide top and side views of the start and goal

configurations, respectively.

The results for this example are summarized in Table 6.i. As shown in the

table, the total time required to find a path and perform str_ng tightening was just

107

under 10 minutes for thisexample. Approximately 30% of the totaltime involved

finding a safepath with the remaining time utilizedforstring tightening.

108

(a) Start Position

(c)

(e)

(b)

(d)

(f) Goal Position

Figure 6.10: Sample Results for Cooperating 9 DOF (Example 4)

109

(a) top view (b) side view

Figure 6.11: Start Configuration for Example 4

(a) top view

,,"_".,.'_.7"/"__,._
/,/,_:"_, ,V,s'

(b) side view

Figure 6.12: Goal Configuration for Example 4

ii0

6.2.5 Effect of String Tightening

An example of the effect of string tightening on the payload path for a cooper-

ating nine dof robot path planning problem is shown in Figure 6.13. Parts (a) and (b)

of the figure show traces of load positions along the path before and after string tight-

ening, respectively. The string'tightening phase required approximately 30 minutes

computation time and resulted in a 37% reduction in path length.

(a) Start Position (b) Goal Position

(c) Gripper paths before tightening (d) Gripper paths after tightening

J

Figure 6.13: String Tightening a Path for Cooperating Nine DOF Robots

111

6.3 NASA Langley's Automated Structure Assembly Lab

A CimStation model of NASA Langley's Automated Structure Assembly Lab

(ASAL) isshown in Figure 6.14.The system consistsofa 6 dof Merlin robot,shown

in Figure 6.15,mounted to a xy-positioningtable (referredto as the carriage),and

a turntable. The turntableincludes a triangularplatform which can rotatearound

a verticalaxis through itscenter. The Merlin robot iskinematically similar to a

Puma. The objectiveof the ASAL isto assemble trussstructuresconsistingof 102

2 meter long struts.Such a trussisillustratedin Figure 6.16.The trussisassembled

upon the turntableof the ASAL by positioningthe carriageand the turntablesuch

that the Merlin may take each strutfrom a canisternear the base of the Merlin and

installitin itsfinalpositionin the assembly.

A singlearm path planner was implemented for the ASAL environment. The

implementation parameters are as follows:

C

g

I

40--"0 step size

= 242 search directions

= $ bins

A = 0.0 forgettingfactor

The assembly sequence considered was provided by NASA. The path planner

quickly found paths for the first 21 struts since there is little possible interference

at that stage. Due to symmetry, the assembly of the remaining 81 struts can be

accomplished using only 21 unique trajectories for the Merlin with the appropriate

carriage and turntable positions for each strut. The path planner was able to find

feasible paths for all 102 struts with solution times ranging from 1 to 30 minutes,

with the vast majority of solution times in the 2 to 5 minute range. Since the final

approach must be in a specified direction, the goal positions used were 10 cm from

the final strut position with the end effector oriented to allow the final insertion to

112

be performed by a straight task space move.

This implementation of the path planner for the ASAL assembly task illus-

trates the potential usefulness of the path planning technique presented in this thesis

for solving practical, potentially very difficult real-world path planning problems.

Some particular comments regarding this implementation follow:

• The path planner has no trouble with goal positions placing the load or robot

in very close proximity to obstacles.

• The path planner performs well even with a large number of obstacles. For

example, the final few struts of the assembly involve over 100 workspace ob-

stacles. The additional collision checks required near the end of the assembly

seem to increase execution time by a factor of approximately two.

• The paths found typically include segments which are obstacle boundary trac-

ing. Because of the close tolerances involved, it is not practical to simply model

the objects larger than actual size to provide a safety margin since so doing

may result in an unsolvable problem. This shortcoming was noted earlier in

Section 5.3.2.2 and possible remedies are addressed in Section 8.2.1.

• The nodes to connect the struts were not modeled. As a result, some of the

paths might collide with the nodes if the paths were used in an actual assembly.

This could be remedied simply by modeling the nodes and including them in

the collision checking routine. Due to the small size of the nodes it is expected

that including them would have little impact on the difficulty of the path

planning problems.

• In a few cases the path planner was not always able to solve the problem

quickly in the forward direction but could quickly solve the problem in the

opposite direction. Although a very confined goal position makes it likely that

113

solving in reverse may prove easier, trial and error was the only sure way to

decide which direction would yield better performance.

• Return paths for the robot after inserting a strut were not planned.

6.4 Cooperating Pumas Assemble a Truss

This section describes the implementation of the path planner to a task whereby

two Pumas work cooperatively to assemble a 24 strut truss. The workcell for this

implementation with the completed truss is shown in Figure 6.17. The pumas are in

their start position in Figure 6.17. The workcell includes two Puma 560's which are

500 cm apart and mounted to a carriage. The carriage can translate toward or away

from a turntable upon which the truss is assembled. The carriage and turntable

are used to position the Pumas and the partially completed truss structure such

that the Pumas may insert each strut without concurrent motion of the carriage or

turntable. The struts are 133 cm long. The robot end effectors are 100 cm apart

when grasping a strut. The parameters for this path planning implementation are

as described in Section 6.2.3 for the CIRSSE Pumas.

The planner successfully planned paths for all 24 struts with solution times

per strut ranging from less than one minute to approximately 10 minutes. Some

points regarding this implementation are as follows:

• Many of the paths found involve multiple arm configurations for one or both

Pumas. As a result, the robots pass through many task space singularities.

• There is significant potential for collision between the robots due to their

proximity.

-:- " : LL::Lk :

• Although the start positions were identical and all the goal task space positions

were known, trial and error was typically necessary in order to determine

suitable goal Puma configurations which would enable a solution to be found.

If4

(a) Isometric View

(b) Top View

_x

7
''r "

(c) Side View

Figure 6.14: NASA Langley's Automated Structure Assembly Lab

115

Figure 6.15:6 DOF Merlin Robot with End Effector for Truss Assembly

(a) Isometric View (b) Top View

I

Figure 6.16:102 Strut Truss Structure

116

Figure 6.17: Workcell for Cooperating Pumas Assembling Truss

CHAPTER 7

Discussion of the Path Planning Strategy

This chapter discusses the path planning strategy presented in this thesis. This

chapter is organized into three main sections:

• Completeness

• Computational Complexity

• Overall Effectiveness

Completeness and computational complexity are discussed in Sections 7.1

and 7.2, respectively. Section 7.3 attempts to judge the overall effectiveness of

the strategy.

7.1 Completeness

Unfortunately, the path planning approach is not complete. In other words,

the approach does not guarantee that a solution will be found or determine that a

solution does not exist. Based on the literature (see Chapter 2), it appears to be

difficult to achieve both completeness and practicality for reasonably difficult yet

practical path planning problems with more than a few degrees of freedom. Since

our emphasis was toward achieving a potentially useful path planner for cooperating

robots with at least 6 dof each, we sacrificed completeness in exchange for the pos-

sibility (with no guarantees) of solving some practical problems within a reasonable

amount of computation time.

This lack of completeness _,Vas discussed earlier in Section 4.3.1 where it was

shown that the c-space traversal heuristic around which the path planner is based

can fail to find a solution even if one may exist due to one of the following scenarios:

117

118

• Cycling occurs.

• No safe point is found by the limited set of search directions.

Modifying the heuristic to guarantee finding a safe point if one exists (such

as by continually increasing the search resolution) would still not ensure complete-

ness since cycling might still occur. In addition, it was shown in Section 4.4 that

performing even one thorough search can be computationally intractable.

Many path planning algorithms such as those based on randomized searches

are probabilistically complete, meaning that given sufficient computation time they

will guarantee finding a solution if one exists. However, such algorithms offer little

practical value since they inevitably take a very long time to run for reasonably

difficult problems.

7.2 Computational Complexity

Computational complexity of this work can be analyzed by giving an upper

or a lower bound on the number of elementary computations or the size of memory

required to solve a problem. Recall from Chapter 2 that the n dof robot path

planning problem is PSPACE-hard with an upper bound complexity of o(nrt).

This section investigates the computational complexity of the planner in order

to determine how an increase in system dof would be expected to affect solution

time. The computational complexity of the planner can be addressed in three parts:

• Precomputations

• Mapping a c-space point.

• Performing searches

• Overall Complexity

119

These parts are discussed below.

The path planning method presented in thisthesisrequires no precomputa-

tions.

Consider a workspace involvingan n linkrobot and m obstacles. Mapping a

c-space point involvesthe followingoperations:

• Updating the link model

• Checking for joint limit violations

• Checking for collisions

Both updating the link model and checking for joint limit violations have an

upper bound complexity O(n). Checking for collisions has a higher upper bound

complexity O(nm). Thus, c-space mapping computations grow linearly with both

increasing dof and number of obstacles.

The worst case complexity for performing searches will be a linear function of

the number of search directions used. For search directions computed as described

by Procedure 4 in Chapter 4, an upper bound on search complexity for an n dof

problem is O(kn-1), where k < n. For our implementation, k = 3 for problems

with a mobility m <_ 9 and k = 2 for problems with mobility m = 12.

An overall upper limit on computational complexity can be taken to be the

worst case complexity of the above three operations. Thus, the path planner pre-

sented in this thesis has an upper bound on complexity of O(kn-1), where k < n.

7.2.1 Possible Benefits of Parallel Processing

When mapping along a prescribed vector, parallel processing could be used

to map each discretized point along that vector simultaneously. Even more signifi-

cantly, the various possible search directions and even the different depths in those

120

directions could beexaminedsimultaneously.Parallel processingcould also greatly

speedthe interferencecheckingby performingmultiple checkssimultaneously.

A massively parallel machine,such as the Connection Machine which has

216 (or 65536) 1-bit processors, could radically decrease the execution time of the

path planner presented in this thesis.

7.3 Overall Effectiveness

Relatively few other approaches have appeared in the literature for solving the

cooperating robot path planning problem for robots with six dof each. The path

planning strategy presented in this thesis appears to be capable of solving more

difficult problems than those approaches. In addition, this thesis illustrates that

the strategy presented can be practically applied to cooperating nine dof robots.

Results in the literature for cooperating redundant robots appear to be limited to

planar manipulators. A single arm version of the planner has demonstrated the

ability to solve some practical yet potentially very difficult path planning problems

in a reasonable amount of time. Some general statements regarding the effectiveness

of the path planner follow:

• Solution times are reasonable for off-line programming (typically under 30

minutes).

• Potential problems with joint limits and multiple arm configurations are in-

herently handled.

• The planner performs well and in reasonable time even with over 100 obstacles.

• The planner is effective even for start and/or goal positions involving little

safety clearance.

CHAPTER 8

Conclusions and Future Work

This Chapter presents some conclusions on the subject of this thesis, Section 8.1,

and discusses some areas for future work, Section 8.2.

8.1 Conclusions

The general problem of planning collision free paths for an n dof robotic sys-

tems has an upper bound on complexity of O(nn). As a result, exact solutions to

the robot path planning problem will likely remain excessively computationally in-

tensive for some time. As a result, any implementation of autonomous robotic path

planning which is likely to prove successful in the near future will probably involve

some simplifying assumptions, shortcuts, or heuristics. While any inexact solution

may fail for some cases, the advantage of this type of approach is that a solution

may be found for many practical yet potentially difficult path planning problems

with a reasonable amount of computation.

This thesis addressed the problem of planning feasible and obstacle-avoiding

paths for two spatial robots working cooperatively in a known static environment.

Because of the apparent impracticality of developing a general and complete path

planning strategy, the main emphasis of this work involved developing a heuristic

based path planner for cooperating robots which sacrifices completeness in exchange

for a hope of finding a solution in a reasonable amount of time. The path planning

approach presented in this thesis is configuration space (c-space) based and performs

selective rather than exhaustive c-space mapping. A novel, divide-and-conquer type

of heuristic is used to guide the selective mapping process. Also, a configuration

space based algorithm was presented to modify any feasible path found by the

planner into a more efficient one.

121

122

Although the path planner cannot guaranteefinding a solution evenif one ex-

ists, and in spiteof its O(k n- 1) complexity for n degree of freedom problems (where

k = 2 or 3 as implemented), it has demonstrated the ability to solve a variety of

practical yet potentially difficult path planning problems with a reasonable amount

of computation. This thesis presented the implementation details and illustrated

sample results for the following four cases: single six dof (6R) robot, single nine dof

(1P-8R) robot, cooperating six dof (6R) robots, and cooperating nine dof (1P-8R)

robots. The path planning program typically requires under 10 minutes to execute

for cooperating six dof robots and under 30 minutes to execute for cooperating nine

dof robots. The planner appears to perform better than other cooperating robot

path planners in the literature.

Some specific advantages and disadvantages of the path planning technique

presented in this thesis are discussed below.

8.1.1 Advantages

1. The planner utilizes selective (non-exhaustive) mapping of c-space thus making

it possible to get solutions in a reasonable amount of time.

2. The planner is global in nature but has provision for local navigation around

obstacles.

3. The approach is completely general and would, in theory, be applicable to any

system of arbitrary dimension. The approach is also independent of the type

of geometric representation employed, so long as the chosen representation

enables mapping of c-space points on an as-needed basis.

4. Unsafe space is handled in the same manor regardless of the reason for it being

unsafe (such as various possible collisions or joint limit violations).

123

5. The approach could be applied to either single robot or cooperating robot

path planning problems.

6. Robot degeneracy is not a concern for single arm problems and is inherently

ha_adled for the cooperating arm scenario (see Chapter 5).

7. While the resulting path is generally sub-optimal, it should be feasible to

"tighten up" on any safe path to obtain a shorter one (Chapter 5.:]).

8. The potential speed of the collision detection is enhanced by the fact that the

method simply needs a yes or a no regarding collisions and does not require

distance or direction information.

9. Cooperating redundant robot path planning problems may be handled without

requiring use of inverse kinematics for a redundant robot.

10. The bulk of the calculations are such that they could be done in parallel (see

Section 7.2).

11. Implementation of the path planner is relatively straightforward and easy.

8.1.2 Disadvantages

1. The planner is heuristic in nature and is not complete, i.e., it cannot guarantee

finding a solution even if one may exist. Other approaches which are complete

are computationally impractical for reasonably difficult yet practical problems

for more than a few doff

2. Joint angles at the start and goal configurations are required to be specified.

3. There is presently no means to determine that a solution exists other than to

find one.

124

4. The number of strategy directions required to achieve an effective search in-

crease exponentially with dimensionality. This effect may be partially offset

by the fact that there may be more acceptable solutions to systems of higher

dimensionality making it easier to find one of them.

5. The resulting path may be longer than necessary even after being shortened.

6. The planner cannot be directly applied to cases with dynamic obstacles.

8.2 • Future Work

Some potential areas of future work include:

• Improvement to String Tightening Process

• Integration with the CIRSSE Geometric State Manager

• Utilization of Parallel Processing

• Guaranteeing Completeness

These areas of potential future work are discussed below.

8.2.1 Improvement to String Tightening Process

As discussed in Section 5.3.0.2, the string tightening algorithm presented

herein has the disadvantage of yielding paths which very nearly involve collision.

This issue could be addressed as part of future work by one of the following means:

• Expanding the obstacles so that paths with very little clearance in the model

actually provide sufficient clearance. This is not a feasible option when the

only safe path involves tight clearances.

• Modifying the cost function (Equation 5.5) to include a penalty for proximity

to obstacles and considering knot point movement in any direction orthogonal

to the segment between the preceding and following knot points.

125

• Implementing an alternate approachto string tightening, such as a poten-

tim fields approachsimilar to that discussedin Section 5.3.1. This is a very

promising approachsincethe local minima problem can be effectively elimi-

nated sincethe path plannerprovidesthe potential fields basedpath smoother

with a feasiblesolution to the global path planning problem.

8.2.2 Integration with the CIRSSE Geometric State Manager

The path planner could be integrated with the CIRSSE Geometric State Man-

ager (GSM) [102]. The purpose of the GSM is to maintain a time-varying geometric

model of the CIRSSE robots and their environment. Once the path planner is in-

tegrated with the GSM, the planner could automatically obtain the current robot

and obstacle information from the GSM when a testbed task determines the need

to utilize the path planner.

8.2.3 Utilization of Parallel Processing

The path planning programs are currently implemented using serial coding.

As such, the path planning program typically requires under 5 minutes to execute for

cooperating six dof robots and under 30 minutes to execute for cooperating nine dof

robots. The algorithm being used is ideally suited for parallel processing since each

search involves a large number of independent calculations. Implementing the path

planning program in parallel could drastically reduce the path planning program

execution time.

8.2.4 Guaranteeing Completeness

As discussed earlier, a complete solution to the cooperating spatial robot path

planning problem appear to be impractical at this time. Nonetheless, it might be

possible to modify the c-space heuristic in such a way as to guarantee completeness.

126

At present, the usefulness of such an modification is at best questionable. However,

advances in both the path planning and computer fields might warrant a second

look at the completeness issue sometime in the future.

8.2.5 Decidability

At this time, there does not appear to be an easy answer to the question as to

the existence of a solution to a given general path planning problem. Future research

advances may make Jt possible to quickly determine whether or not a solution will

exist.

LITERATURE CITED

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Reif, John H. Complexity of the Mover's Problem and Generalizations

Extended Abstract. In Proceedings of the 20th Annual IEEE Conference on

Foundations of Computer Science, pages 421-427, 1979.

Schwartz, J.T. and M. Sharir. On the 'Piano Movers' Problem II. General

Techniques for Computing Topological Properties of Real Algebraic

Manifolds. Computer Science Technical Report No. _1, February 1982.

Courant Institute, New York University.

Canny, J.F. The complexity of robot motion planning. MIT Press, 1988.

Dooley, J.R. and J.M. McCarthy. Parameterized Descriptions of the Joint

Space Obstacles for a 5R Closed Chain Robot. In Proceedings of the IEEE

International Conference on Robotics and Automation, pages 1536-1541,

1990. Vol. 3.

Dupont, Pierre E. Planning Collision-Free Paths for Kinematically

Redundant Robots by Selectively Mapping Configuration Space. PhD thesis,

Rensselaer Polytechnic Institute, Troy, NY, 1988.

Schima, Francis J. Two Arm Robot Path Planning in a Static Environment

Using Polytopes and String Stretching. Master's thesis, Rensselaer

Polytechnic Institute, Troy, NY, 1990.

CimStation User's Manual, CimStation 4.3. Silma Inc., Cupertion, CA, 1992.

Akman, Varol. Shortest Paths Avoiding Polyhedral Obstacles in

3-Dimensional Euclidian Space. PhD thesis, Rensselaer Polytechnic

Institute, Troy, NY, June 1985.

Andresen, F.P. Visual Algorithms for Autonomous Navigation. In

Proceedings of the IEEE International Conference on Robotics and

Automation, pages 856-861, St. Louis, MO, March 1985.

Brooks, Rodney A. and Tomas Lozano-Perez. A Subdivision Algorithm in

Configuration Space for Findpath with Rotation. In IEEE Transactions on

Systems, Man, and Cybernetics, pages 224-233, March/April I985. Vol.

SMC-15, No. 2.

Brooks, Rodney A. Solving the Findpath Problem by Good Representation

of Free Space. In IEEE Transactions on Systems, Man, and Cybernetics,

pages 190-197, March/April 1983. Vol. SMC-13, No. 3.

127

128

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[2o]

[21]

[22]

[23]

Brooks, Rodney A. Planning Collision-Free Motions for Pick-and-Place

Operations. International Journal of Robotics Research, 1983, Vol. 2, No. 4,

pp 19-44. Winter.

Canny, J.F. and M.C. Lin. An opportunistic global path planner. In.

Proceedings of the IEEE International Conference on Robotics and

Automation, pages 1554-1559, 1990.

R.T. Chien, Ling Zhang and Bo Zhang. Planning Collision-Free Paths for

Robotic Arm Among Obstacles. In IEEE Transactions on Pattern Analysis

and Machine Intelligence, January 1984. Vol. PAMI-6, No. 1.

Donald, Bruce R. Hypothesizing Channels Through Free-Space in Solving

the Findpath Problem. In MIT A.L Memo No. 736, June 1983.

Donald, Bruce R. On Motion Planning With Six Degrees of Freedom:

Solving the Intersection Problem in Configuration Space. In Proceedings of

the IEEE International Conference on Robotics and Automation, pages

536-541, St. Louis, MO, March 1985.

Faverjon, Bernard. Object Level Programming of Industrial Robots. In

Proceedings of the IEEE International Conference on Robotics and

Automation, pages 1403-1411, 1986. Vol. 3.

Faverjon, Bernard. Obstacle Avoidance Using an Octree in the

Configuration Space of the Manipulator. In Proceedings of fnternational

Conference on Robotics, pages 504-512, Atlanta, GA, March 1984.

Gouzenes, Laurent. Strategies for Solving Collision-Free Trajectories

Problems for Mobile and Manipulator Robots. International Journal of

Robotics Research, 1984, Vol. 3, No. 4, pp 51-65. Winter.

Hasegawa, Tsutomu. Collision Avoidance Using Characterized Description of

Free Space. '85 [CAR, 1985, pages 69--76.

Kambhampati, S. and L.S. Davis. Multi-Resolution Path Planning for

Mobile Robots. IEEE Journal of Robotics and Automation, September I986,

Vol. RA-2, No. 3, pp 135-145.

D.T. Kuan, J.C. Zamiska and R.A. Brooks. Natural Decomposition of Free

Space for Path Planning. In IEEE International Conference on Robotics and

Automation, pages 168-173, St. Louis, MO, March 1985.

Laugier, C. and F. Germain. An Adaptive Collision-Free Trajectory Planner.

'85 ICAR, 1985, pages 33-41.

129

[24] Lozano-Perez,T. Spatial Reasoningin the Planning of Robot Motions.
Proceedings of the 1981 Joint Automatic Control Conference, June 1981,
pages WP-2D.

[25] Lozano-Perez, T. Spatial Planning: A Configuration Space Approach. IEEE

Transactions on Computers, February 1983, Vol. C-32, No. 2, pp 108-120.

[26]

[27]

Lozano-Perez, Tomas. A Simple Motion Planning Algorithm for General

Robot Manipulators. IEEE Journal of Robotics and Automation, June 1987,

Vol. RA-3, No. 3, pp 224-238.

Park, W.T. State Space Representations for Coordination of Multiple

Manipulators. Proceedings 1,1th International Symposium on Industrial

Robots, 7th International Conference on Industrial Robot Technology,

October 1984, pages 397-405.

[28]

[291

[30]

Red, W.E. Configuration Maps for Robot Task Planning in 3-D. Computers

in Engineering I98,_, 1984, pages 115-124.

Udupa, S. Collision Detection and Avoidance in Computer Controlled

Manipulators. Ph.D. Dissertation, Department of Electrical Engineering,

California Institute of Technology, 1977.

Wang, E.K. and K.S. Fu. A Heirarchical-Orthogonal Space Approach to

Collision-Free Path Planning. Proceedings of the IEEE International

Conference on Robotics and Automation, March 1985, pages 506-511. St.

Louis, MO.

[311 Dittenberger, Kurt. Graph Decomposition and Retraction: An Approach to

Collision-Free Path Planning. PhD thesis, Rensselaer Polytechnic Institute,
I990.

[32]

[331

[34]

Sharir, Micha. Algorithmic Motion Planning in Robotics. IEEE Symposium

on Robotics and Automation, 1989, pages 9--19.

Lozano-Perez, T. and M. Wesley. An Algorithm for Planning Collision Free

Paths Among Polyhedral Objects. Comm. ACM, 1979, Vol. 22, pp 560-570.

T.H. Corinth, C.E. Leiserson and R.I. Rivest. Introduction to Algorithms.

McGraw-Hill Book Company, New York, New York, 1990.

[35]

[36]

Branicky, M.S. and W.S. Newman. Rapid Computation of Configuration

Obstacles. In Proceedings of the IEEE International Conference an Robotics

and Automation, pages 304-310, 1990.

Paden, B., A. Mees, and M. Fisher. Path planning using a Jacobian-based

freespace generation algorithm. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 1732-1737, 1989.

130

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[4s]

Kondo, K. Motion planning with six degrees of freedom by multstrategic

bidirectional heuristic free-space enumeration. In IEEE Transactions on

Robotics and Automation, pages 267-277, June 1991. Vol. 7, No. 3.

Chen, Pang C. and Yong K. Hwang. SANDROS: A motion planner with

performance proportional to task difficulty. In Proceedings of the IEEE

International Conference on Robotics and Automation, pages 2346-2353,

Nice, France, May 1992.

Herman, Martin. Fast, Three-Dimensional Collision-Free Motion Planning.

In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 1056-1063, 1986. Vol. 2.

Herman, Martin. Fast Path Planning in Unstructured, Dynamic, 3-D

Worlds. unpublished manuscript, Robot Systems Division, National Bureau

of Standards, January, 1986.

Lee, B.H. and Y.P. Chien. Time-Varying Obstacle Avoidance for Robot

Manipulators Approaches and Difficulties. In Proceedings of the [EEE

International Conference on Robotics and Automation, pages 1610-1615,

I987. Vol. 3.

Lee, B.H. and Y.P. Chien. Time-Varying Obstacle Avoidance for Robot

Manipulators: Approaches and Difficulties. Proceedings of the [EEE

International Conference on Robotics and Automation, 1987, Vol. 3, pp
1610-1615.

Gupta, Kamal Kant. Fast Collision Avoidance for Manipulator Arms: A

Sequential Search Strategy. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 1724-1729, 1990.

Lewis, R.A. Autonomous Manipulation of a Robot: Summary of

Manipulator Software Functions. Jet Propulsion Laboratory Technical

Memorandum 33-679, March 15 1974.

Pieper, D. The Kinematics of Manipulators Under Computer Control PhD

thesis, Stanford University, 1969.

Glavina, Bernhard. Solving findpath by combination of goal-directed and

randomized search. In Proceedings of the IEEE International Conference on

Robotics and Automation, pages 1718-1723, 1990.

Yap, Chee-Keng. How to Move a Chair Through a Door. IEEE Journal of

Robotics and Automation, June 1987, Vol. RA-3, No. 3, pp 172-181.

Rovetta, Alberto and Remo Sala. Robot motion planning with parallel

systems. In Proceedings of the IEEE International Conference on Robotics

and Automation, pages 2224-2229, Nice, France, May 1992.

131

[49] Brooks, R.A. Solving the find-path problem by good representation of free

space. In IEEE Transactions on Systems, Man, and Cybernetics, pages

190-197, March/April 1983. Vol. SMC-13, No. 2.

[50] Canny, John. A Voronoi Method for the Piano Movers Problem. In

Proceedings of the IEEE International Conference on Robotics and

Automation, pages 530-535, St. Louis, MO, March 1985.

[51] Donald, Bruce R. Motion Planning with six degrees of freedom. In MIT A.L

Memo No. 79I, 1984.

[52] Lumelsky, Vladimir J. and K. Sun. Gross Motion Planning for a Simple 3-D

Articulated Robot Arm Moving Amidst Unknown and Arbitrarily Shaped

Objects. Proceedings of the IEEE International Conference on Robotics and

Automation, 1987, Vol. 3, pp 1929-1934.

[53] Lumelsky, Vladimir J. and A. Stepanov. Path Planning Strategies for a

Traveling Automaton in an Environment with Uncertainty. Center for

Systems Science Technical Report No. 8504, Electrical Engineering, Yale

University, April 1985.

[54] Lumelsky, Vladimir J. On Dynamic Path Planning for a Planar Robot Arm.

Center for Systems Science Technical Report No. 8505, Electrical

Engineering, Yale University, April 1985.

[55] Lumelsky, Vladimir J. Continuos Motion Planning in Unknown Environment

for a 3-D Cartesian Robot. Proceedings of the IEEE International

Conference on Robotics and Automation, 1986, Vol. 3, pp 1050-1055.

[56] Lumelsky, Vladimir J. Effect of Kinematics on Motion Planning for Planar

Robot Arms moving Amidst Unknown Obstacles. IEEE Journal of Robotics

and Automation, June 1987, Vol. RA-3, No. 3, pp 207-223.

[57] Petrov, A.A. and I.M. Sirota. Obstacle Avoidance by a Robot Manipulator

Under Limited Information About the Environment. Automatic Remote

Control, April 1983, Vol. 44, No. 4, pp 431--440.

[58] Warren, C.W. Visual Algorithms for Autonomous Navigation. In

Proceedings of the [FEE International Conference on Robotics and

Automation, pages 1021-1026, Sacramento, CA, April 1991.

[59] Lee, C.T. and P.C.Y.Sheu. A Divide-and-Conquer Approach with Heuristics

of Motion Planning for a Cartesian Manipulator. In IEEE Transactions on

Systems, Man, and Cybernetics, pages 929-944, September/October 1992.

Vol. SMC-15, No. 2.

[60] Koichi Kondo, et al. Motion Planning in Plant CAD Systems. Toshiba Corp.

ME R&D Center, 4-1, Kanagawa Pref. 210, Japan.

132

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Khatib, O. and J.F. Lemaitre. Dynamic Control of Manipulators Operating

in a Complex Environment. 3d CISM [FToMM Symposium on Theory and

Practice of Robot Manipulators, September 1978.

Hogan, N. Impedance Control: An approach to Manipulation. In ASME

Transactions on Dynamic Systems, Measurement, and Control, volume 107,

pages 1-24, March 1985.

Khosla, P. and R. Volpe. Superquadric artificial potentials for obstacle

avoidance and approach. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 1778-1784, 1988.

Okutomi, M. and M. Mori. Decision of robot movement by means of a

potential field. In Advanced Robotics, volume 1, pages 131-141, 1986.

Warren, Charles W. Global Path Planning Using Artificial Potential Fields.

In IEEE International Conference on Robotics and Automation, pages

316-321, 19S9.

Hirukawa, H. and S. Kitamura. A Collision Avoidance Algorithm for Robot

Manipulators Using the Potential Method and Safety First Graph. In

Japan-U.S.A. Symposium on Flezible Automation, pages 99-102.

Aerospace, Martin Marietta Denver. Phase I - Intelligent Task Automation.

Air Force Wright Aeronautical Laboratories, Technical Report

AFWAL-TR-85-4062, Vol. 3, pp. 194-208, 2t4-215, April 1986.

Meyers, J.K and G.J. Agin. A Supervisory Collision Avoidance System for

Robot Controllers. Robotics Research and Advanced Applications, 1983,

pages 225-232. W.J. Book, editor, ASME, New York, NY.

Myers, J.K. Multi-Arm Collision Avoidance Using a Potential Field

Approach. SRI International, Menlo Park, CA, 1983.

Munger, Rolfe. Path Planning for Assembly of Strut-Based Structures.

Master's thesis, Rensselaer Polytechnic Institute, Troy, NY, May 1991.

Warren, C.W. et at. An approach to manipulator path planning.

International Journal of Robotics Research, October 1989, Vol. 8, No. 5, pp

87-95.

Warren, C.W. A vector based approach to robot path planning. In

Proceedings of the IEEE International Conference on Robotics and

Automation, April I991. Sacramento, CA.

Kim, Jin-Oh. Real-Time Obstacle Avoidance Using Harmonic Potential

Functions. In [EEE Transactions on Robotics and Automation, pages

338-349, June 1992. Vol. 8, No. 3.

133

m

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

Krogh, B.H. A generalized potential field approach to obstacle avoidance

control. In Proceedings SME Conference on Robotics Research, Bethlehem,

PA, August 1984.

Burns, C.I. Connolly J.B. and R. Weiss. Path lanning using Laplace's

equation. In Proceedings of the IEEE International Conference on Robotics

and Automation, pages 2102-2106, Cincinatti, OH, May 1990.

Rimon, E. and D.E. Koditschek. Exact robot navigation using artificial

potential fields. In IEEE Transactions on Robotics and Automation, pages

501-518, October 1992. Vol. 8, No. 5.

Faverjon, B. and P. Tournassoud. A Local Approach for Path Planning of

Manipulators with a High Number of Degrees of Freedom. In Proceedings of

the IEEE International Conference on Robotics and Automation, pages

1152-1159, 1987.

Barraquand, Jerome and Jean-Claude Latombe. A Monte-Carlo Algorithm

for Path Planning With Many Degrees of Freedom. In Proceedings of the

IEEE International Conference on Robotics and Automation, page 1712,

1990. Vol. 3.

Lozano-Perez, T. et at. Task-Level Planning of Pick-and-Place Robot

Motions. Computer, 1989, Vol. 22, No. 3,.

Derby, Stephen J. Kinematic Elasto-Dynamic Analysis and Computer

Graphics Simulation of General Purpose Manipulators. PhD thesis,

Rensselaer Polytechnic Institute, Troy, NY, 1982.

Hornick, M.L. and B. Ravani. Computer-Aided Off-Line Programming of

Robot Motion. International Journal of Robotics Research, 1986, Vol. 4, No.

4,. Winter.

Stobart, R.K. Geometric Tools for the Off-Line Programming of Robots.

Robotica, 1987, Vol. 5, pp 273-280.

Han, D. et at.Computer-aided off-line planning of robot motion. Robotics

and Autonomous Systems, 1991, Vol. 7, pp 67-72.

Weisbin, C.R. and M.D. Montemerlo. NASA's telerobotics research program.

In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 2653-2666, Nice, France, May 1992.

Chien, Yung-Ping and Qing Xue. Path planning for two planar robots

moving in unknown environment. In IEEE Transactions on Systems, Man,

and Cybernetics, pages 307-317, March/April 1992. Vol. SMC-22, No. 2.

134

[861

[87]

[88]

[89]

[90]

[91]

Koga, Yoshihito and Jean-Claude Latombe. Experiments in Dual-Arm

manipulation planning. In Proceedings of the [EEE International Conference

on Robotics and Automation, pages 2238-2245, Nice, France, May 1992. Vol.

3.

Seereeram, Sanjeev and John T. Wen. A global approach to path planning

for redundant manipulators. In Proceedings of the 199_2 Regional Control

Conference, pages 101-104, Brooklyn, NY, 1992.

Lim, Joonhong and Dong H. Chyung. Admissible Trajectory Determination

for Two Cooperating Robot Arms. Robotica, 1988, Vol. 6, pp 107-113.

Hu, Yan-Ru and Andrew A. Goldenberg. Dynamic control of multple

coordinated redundant robots. In IEEE Transactions on Systems, Man, and

Cybernetics, pages 568-574, May/June 1992. Vol. SMC-22, No. 3.

Bodduluri, Radhika Mohan. Design and Planned Movement of Multi-Degree

of Freedom Spatial Mechanisms. PhD thesis, University of California, Irvine,
1990.

Chen, Jau-Liang and Joseph Duffy. Path Generation for Two Cooperative

Puma Robots. In Robotics, Spatial Mechanisms, and Mechanical Systems,

ASME, volume DE-45, pages 195-201, 1992.

[92] McKerrow, P.J. Introduction to Robotics. Addison-Wesley, Reading, MA,
1991.

[93]

[94]

[95]

[96]

[971

[98]

Hwang, Y.K. and Narendra Ahuja. Gross Motion Planning- A Aurvey.

ACM Computing Surveys, September 1992, Vol. 24, No. 3, pp 219-291.

Fu, K. S., R.C. Gonzalez, and C. S. G. Lee. Robotics: Control, Sensing,

Vision, and Intelligence. McGraw-Hill Book Company, New York, New

York, 1987.

J.E. Bobrow, S. Dubowsky and J.S. Gibson. Time-Optimal Control of

Robotic Manipulators Along Specified Paths. International Journal of

Robotics Research, 1985, Vol. 4, No. 3, pp 3-17. Fall.

Bryson, A.E. Jr. and Y.C. Ho. Applied Optimal Control Hemisphere

Publishing, Washington, D.C., 1975.

Thorpe, C.E. Path Relaxation: Path Planning for a Mobile Robot.

CMU-RI, TR-84-5, 1984.

A Representation Scheme for Rapid 3-D Collision Detection. CIRSSE

Document No. 9, 1988.

[99]

[100]

[lOl]

[lO21

135

Hamlin, G.J. and R.B. Kelley. Efficient Distance Calculation using the

Spherically-Extended Polytope (S-tope) Model. In Proceedings of the IEEE

International Conference on Robotics and Automation, pages 2502-2507,

Nice, France, May 1992. Vol. 3.

Hron, Anna B. Graphical Interface Between the Cirsse Testbed and

Cimstation with MCS/CTOS. Master's thesis, Rensselaer Polytechnic

Institute, Troy, NY, 1992.

Testbed Kinematic Frames and Routines. CIRSSE Technical Memo No. i,

March 1991.

The Geometric State Manager. CIRSSE Technical Memo No. 21, December

1992.

APPENDIX A

CIRSSE Testbed Kinematic Frames

This appendix describes the CIRSSE Testbed kinematic frames and the joint limits.

The first section describes how the coordinate frames are assigned and num-

bered. Section 2 defines the pose names. For reading ease, angular data presented

in this appendix is given in units of degrees.

A.1 Coordinate Frames

This section describes the conventions related to the coordinate frame assign-

ments for the 18-DOF Testbed. This section includes a set of standard labels for

the coordinate frames and numbers for the joints. The joint ranges implied by the

coordinate frame assignment are also given.

A.I.1 Assignment/Labeling of Frames

The consistent numbering of the joints in the Testbed results in a convention

for referring to the joints by a standard set of labels. The designed convention

specifies one uniform assignment of the coordinate frames, whereby each frame is

associated with a single joint and each joint is associated with a single frame, (i.e.,

there are no redundant frames). Although the frame assignments and their asso-

ciation with the joints are unique, there are two different ways to number each

frame/joint. This results in two different sets of frame]joint labels: one to account

for an 18-DOF experiment, and one to account for a 9-DOF experiment.

The assignment of frame 0, i.e., the global origin, is made on top of the back

platform rail in the middle of its length. The positive x-axis of this frame points

towards the other platform rail, the positive y-axis points to the right of the Testbed,

and the positive z-axis points towards the ceiling. Scribe marks will be placed on

136

137

the back railto indicatethiscoordinate frame's origin,positivem-axis,and positive

y-axis.

The coordinate frame numbering startswith the leftcart,continues through

the leftPUMA, and then includesthe rightcart and rightPUMA. The coordinate

frames associated with the PUMA jointsare ordered in the standard way. During

an 18-DOF experiment, the frame/jointlabelsGI through G1s are used sequentially

in the manner just described (G indicatesglobal).During a 6-or 9-DOF experiment,

the frame/joint labelsare Ll through Lg,or RI through Rg, depending on whether the

leftor rightPUMA+cart isused, respectively.Note, there is no reduced classifica-

tion of the frame labelsbeyond those fora singlePUMA+cart. Thus, a PUMA only

experiment willuse jointsnumbered L4 through L9 or R4 through Ro. The following

table summarizes the numbering and labeling of the coordinate frames, and gives

the hardware joint limits for the PUMA (rounded to the nearest degree).

138

_rame

number

0

1

2

3

4

5

6

7

8

9

i0

II

12

13

14

15

16

17

18

name of

associated axis

n/a

left cart linear

left cart rotate

left cart tilt

left PUMA shoulder

left PUMA upper-arm

left PUMA fore-arm

left PUMA wrist

left PUMA flange tilt

left PUMA flange rotate

right cart linear

right cart rotate

right cart tilt

right PUMA shoulder

right PUMA upper-arm

right PUMA fore-arm

right PUMA wrist

right PUMA flange tilt

right PUMA flange rotate

global

label

Go

G1

G2

G3

G4

G5

G6

G,

Gs

G9

GIO

Gll

(]12

GI3

G14

G15

(]16

Glz

Gls

local

label

L0,

Ll

L2

L3

L4

Ls

L6

L_

Ls

L9

R1

R_

R3

R_

Rs

RT

Rs

physical limit

associated joint

n/a

(-1.3716, 0.6096) m

(-150, 150) degs

(-45, 45) degs

(-256, 79) degs

(-221", 40") degs

(-60, 246) degs

(-126, 150 °) degs

(-100, 100) degs

(-290", 290") degs

(-0.6096, 1.3716) m

(-150, 150) degs

(-45, 45) degs

(-253, 83) degs

(- 221 ", 43") degs

(-60, 243) degs

(-134, 153") degs

(-100, 100) degs

(-290", 290") degs

The numbers marked with • indicate those limits which are not the mechanical

limits of the joint but the encoder limits. In either case, a hardware limit has been

reached. Beyond an encoder limit, the encoder count exceeds the storage capacity

of a 'C' short, causing a sign change in the encoder value. This would have serious

repercussions for any real-time control code.

139

The coordinateframe assignmentfollowsa Modified Denavit-Hartenbergfor-

mulation, wherebythe i th frame is attached to the i _h link and has its origin on the

i th joint axis, (reL, Craig, J. J., "Introduction to Robotics Mechanics and Control, "

Addison-Wesley, 1986, Chapter 3). Note that motion of a given joint throughout its

entire range does not guarantee lack of collisions; this is particularly true with the

linear joints of the carts.

Two figures attached to the end of this memorandum illustrate the coordinate

frame assignment. Figure A.1 shows all 18 coordinate frames and joints for the carts

and PUMAs. Figure A.2 shows a closer view of the coordinate frames for the left

PUMA+cart.

The kinematic parameters for one of the PUMA+cart pairs are given in the

following table. Entries preceded by an asterisk indicate the currently accepted

approximate values which may change at a later date.

frame

number, i

_i-1

1 -90 °

2 90 °

3 -90 °

4 90 °

5 -90 °

6 0 °

7 90 °

8 -90 °

9 90 °

*0.32000

0.00000

0.00000

0.00000

0.00000

0.43182

-0.02031

0.00000

0.00000

ql

*0.54400

0.00000

*0.82800

0.24300

-0.09391

0.43300

0.00000

0.00000

Note that frames 7, 8, and 9 have co-located origins.

0

q_

q3

q4

qs

q6

qr

qs

qs

Specifically, the last

frame is not located at the flange of the PUMA's wrist. Numerical detail for the

140

transformation from frame 9 to the gripper frame have not as yet been determined.

HOME positions have been defined for the MCS for the PUMAs. This position

corresponds to all zero joint values, and is shown in Figures A.1 and A.2. This

position, because of the alignment of two the wrist joint axes, is singular.

A.2 Software Joint Limits for the PUMAs

While the hardware joint limits describe the range of motion physicMly per-

mitted, it is not possible to utilize this entire range. For example, path planners may

require additional restrictions to provide safe motion. The following table lists the

recommended joint limits for the testbed. These values are based on the hardware

joint limits with consideration given to the link size and range, and a safety region

(nominally 5 degrees, except it is 6 degrees for a joint able to reach its encoder

limit).

141

fr_fle

number

name of global

associated axis label

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

n/a Go

left cart linear

left cart rotate

left cart tilt

left PUMA shoulder

left PUMA upper-arm

left PUMA fore-arm

left PUMA wrist

left PUMA flange tilt

left PUMA flange rotate

right cart linear

right cart rotate

right cart tilt

right PUMA shoulder

fight PUMA upper-arm

right PUMA fore-arm

right PUMA wrist

right PUMA flange tilt

fight PUMA flange rotate

local software range of

label associated joint

Lo, 1% n/a

(]1 L1 (--1.3716, 0.6096) m

(]2 L_ (--150, 150) degs

(]3 L3 (--45, 45) degs

(]4 L4 (--251, 74) degs

(]5 Ls (--215, 34) degs

Gs L6 (--55, 241) degs

(jr Lr (--121, 144) degs

(]s Ls (-95, 95) degs

(]9 L9 (-284, 284) degs

(]1o R1 (--0.6096, 1.3716) m

(]11 R2 (--150,150) degs

Ga_ R3 (-45, 45) degs

(]13 R4 (--248, 78) degs

(]14 Rs (-215, 37) degs

Gls I_ (-55, 238) degs

(]16 Rr (-129, 148) degs

Gar Rs (-95, 95) degs

(]xs 1% (--284,284) degs

The information in the joint limit tables should be used in the following man-

ner:

* Trajectory generators, controllers, path planners, etc, should use the software

joint limits for specifying the manipulator motion ranges.

142

* The low levelprotection codein the robot channeldrivers shouldusehardware

joint limits.

This usagepermits a consistentspecificationof manipulator motions and provides

two levelsof protection against reachingthe joint limits: the channel drivers will

disable a joint only when the physical limit is threatened; higher level software will

never request a joint move to these limits. It is expected that the channel drivers

will also include a 3 degree limit on these values to ensure safety.

A.3 Pose Names

In general, three pose variables, each with two values, are needed to select

the desired solution from the eight possible solutions of a PUMA inverse kinematic

problem. Selection of the pose definitions was a trade-off between easy visualization

of the pose by human analogy and ease of computation. The labels to be used for

the PUMA poses and their definitions are summarized in the table below--joint

variables referenced are those for the left PUMA.

pose name joint range

right ft_(q4, qs, q6) < 0

left f,_(q4, qs, q_) > 0

flex q8 < 92.6864 °

noflex q6 > 92.6864 °

flip

noflip

qs < O°

qs>O °

Standing on the PUMA base and looking straight at its wrist, the shoulder

link of the PUMA will be on either the left or right side of your body, corresponding

to the left or right configuration, respectively. It is important to only consider the

143

location of the PUMA's wrist coordinate frame, and not the flange of its last joint or

any tool that might be attached to the wrist. The computation involves joints 4, 5,

and 6. The PUMA is in the left configuration when it is in the HOME position, (as

shown in Figures A.1 and A.2). With the other PUMA joints remaining stationary,

this configuration variable changes when either qs or q6 move to cause the wrist to

pass over the "head" of the PUMA. When the wrist is directly above the PUMA,

the robot is neither in the left or right configuration.

Consider, now, that the PUMA is in the left configuration. When the value

of the elbow angle, i.e., q6, is 92.6864 °, the fore-arm and upper-arm align to make

the PUMA stretched. In this position, the PUMA is neither in the flex or noflex

configuration. As the fore-arm is drawn towards the top of the upper-arm by chang-

ing the elbow angle, i.e., the motion achievable with the unbroken human arm, the

PUMA enters the flex configuration (so named since this motion mimics a human

flexing his/her arm). Conversely, the PUMA is in the noflex configuration if the

elbow angle is changed in the other direction. This analogy is reversed when the

PUMA is in the right configuration. In this case, the orientation of the fore-arm

and upper-arm unlikely for humans is the flex configuration.

The last pose label deals with the PUMA's wrist orientation. Because of the

construction of the PUMA wrist, there is no human analogy to this redundancy. A

piece of tape will be placed on the PUMA's wrist near the axis of qs. When qs is

such that the flange of the PUMA's wrist overlaps the tape, then the PUMA will

be in the no flip configuration.

-- 144

Figure A.I: Coordinate Frame Assignments

145

Figure A.2: Left Half Coordinate Frame Assignments

APPENDIX B

Data for Examples Presented in Thesis

This Appendix provides the task and obstacle descriptions for the examples pre-

sented earlier in Chapter 6. The task description has the form of start and goal

joint angles. Revolute joints are measured in degrees and prismatic joints are mea-

sured in ram. The obstacle descriptions have the following format with dimensions

in mm:

/ obstacle no. / number of points / polytope radius / origin of reference frame

(X,Y,Z) / (X,Y,Z) of first point/.-- / (X,Y,Z) of last point /

Solution times and other solution parameters were presented earlier in Chap-

ter 6.

The point coordinates are in local coordinates. The obstacle reference frames

have the same orientation as the world reference frame. The world reference frame

and the robot joint angle definitions are defined in [101].

B.1 Data for Examples 1 and 2

Examples 1 and 2 are identical except that the lower three joints remain fixed

for Example 1 but are allowed to move for Example 2. The start and goal joint

angles for these examples are:

®o = (0, 0, 0, 16.03, -148.79, -8.35, 0.00, -22.86,106.03) and

ef = (0, 0, 0, -184.37, -158.90, 20.22, 0.00, -41.32,265.63), respectively. The eight

obstacles are as follows:

/ 1 / 2 / 40 / (1000,-100,800) / (200,0,0) / (-200,0,0) /

/ 2 / 2 / 40 I (1000,-100, 800) / (200, 0, 0) / (0, 0, 346) /

146

147

131

141

(lOO,-ioo,

(lOO,-lOO,

151810

(lOO,-lOO,

(ioo,-lOO,

161810

(5O,-lOO,o)

1718101

(5o,-IOO,o)

2 1 40 1 (i000,-100, soo) I (-200,o, o) I (0, o, 346) I

8I0I(500,600,1250)I(100,100,O)I(-I00,i00,O)I(-100,-I00,O)I

O)I(I00,I00,200)/(-I00,100,200)I(-I00,-I00,200)I

200)I

I(-200,200,1000)I (-i00,-100,O)I(-I00,100,O)I(100,100,O)I

O)/(-I00,-I00,I00)I(-I00,100,100)I(I00,100,100)I

I00)/

/ (-350, 200, 800) / (-_0,-100, o) / (-50, 100, O) / (50, 100, O) /

/ (-50,-i00,300)/(-50,I00,300)/(50,i00,300)I(50,-100,300)/

(-50,200,800)/(-50,-I00,O)/(-50,I00,O)/ (50,I00,O)/

I(-50,-100,300)I(-50,100,300)I(50,i00,300)I(50,-100,300)I

1818101 (-200,200, 800) I(-I00,-I00,0) I (-100,100,0) I (100, I00,0) I

(I00,-i00, O) / (-I00,-I00,I00) / (-i00,I00, 100) / (I00, i00, 100) /

(100,-100, i00) /

B.2 Data for Example 3

For this example, platform 1 is fixed at (-900,-90, 0) and platform 2 is fixed

at (900, -90, 0). The start robot I and 2 joint angles for this example are:

O10 = (64.40, -178.80, 121.20,0.00,57.60,115.60) and

020 = (-226.97,-185.55,136.58,0.00,48.98,226.97), respectively. The goal joint

angles for this example are:

(91f = (-42.00, -169.46,115.96, 0.00, 53.40,222.00) and

®2f = (-111.92, -176.85, 133.07, -0.14, 43.75, 112.02), respectively. The six obsta-

cles axe as follows:

/ I / 8 / 0 / (400, 0, 1750) / (275, 150, 0) [(275,-150, 0) / (-275,-150, 0) /

(-275, 150, O) / (275, 150, 100) / (275,-150, 100) / (-275,-150, 100) / (-275, 150, 100) /

148

/ 2 / 8 / 0 / (500,0, 2000)/ (375, 150,0) / (375,-150, 0) / (-375,-150, 0) /

(-375,150,0) / (375,150,I00) / (375,-150, 100)/ (-375,-150,100)/ (-375,150,100)/

/ 3 / 8 / 0 / (180,0, 2100)/ (50,150,0) / (50,-150,0) / (-50,-150, 0) / (-50,150,0) /

(50,150,300)/ (50,-150,300)/ (-50,-150,300)/ (-50,150,300)/

/ 4/ 8/ 0 / (180,o, 1450)/ (50,

(50,150,300)/ (50,-150,300)

/ 5 / 8 / 0 / (825,o, 1850)/ (50,

150,o) / (50,-150,o) / (-50,-150,o) / (-50,150,o) /

/ (-50,-150, 300) / (-50, 150,300) /

150,o) I (50,-150,o)/ (-50,-150,o) / (-50,150,o) /

(50, 150, 150) / (50,-150, 150) / (-50,-150, 150) / (-50,150, 150) /

/ 6 / 8 / 0 / (-175,O, 1750) / (50,150,O) / (50,-150,O) / (-50,-150,O) / (-50,150, O) /

(50, 150, 250) / (50,-150, 250) / (-50,-150, 250) / (-50, 150, 250) /

B.3 Data for Example 4

The start robot 1 and 2 joint angles for this example are:

®lo = (-1300.00, 0.00, -40.00, -5.00, -110.70, 19:20, 4.30, -48.80, 83.40) and

®2o = (-500.00, 0.00, -40.00, -184.92, -72.57, 170.91,4.76, 41.97, 82.76), respec-

tively. The goal joint angles for this example are:

®If = (500.00,0.00,40.00,--149.81,--163.61,46.29,23.80,72.91,242.14) and

®2f = (1300.00,0.00,40.00,- 171.09,-157.32, 33.29,7.09,74.44,82.36),respectively.

The eight obstacles are as follows:

/ 1 / 8 / 0 / (-750,-850, 700) / (-50,-100, 0) / (-50, 100, 0) / (50, 100, 0) /

(50,- 100, O) / (-50, - I00, 300) / (-50, 100, 300) / (50, 100, 300) / (50,- 100, 300) /
f

/ 2 / 8 / 0 / (-1000,-850, 700) / (-50,-100, O) / (-50, 100, O) / (50, 100, O) /

(50,-100, O) / (-50,-i00,300) / (-50,100, 300) / (50, 100, 300) / (50,-100, 300) /

/ 3 / 8 / 0 / (-875 -350, 700) / (-i00,-50, O) / (-i00,50, O) / (i00, 50, O) /

(100, -50, 0) / (- 100, -50, 300) / (-100, 50, 300) / (100, 50, 300) / (100, -50, 300) /

149

/ 4 / s / 0 / (-575,-1350, Too) / (-100,-50, o) / (-100, 50, o) / (i00, 50, o) /

(i00, -50, o) / (-100,-50, 300) / (-100,50, 300) / (100, 50, 300) / (100,-50, 300) /

/ 5 / 8 / 0 / (-8_5,-850, 600) / (-175,-550,o) / (-175,550, o) / (175,550, o) /

(175,-550, o) / (-175,-550, 100) / (-175,550, 100) / (175, 550, 100) /

(175,-550, 100) /

/ 6 / 2 / 100 / (1450,1000,o) / (0, o, 0)./(0, o, 650) /

/ 7 / 8 / 0 / (1550,100,750) / (-200,-100,o) / (-200, 100,o) / (200, 100,o) /

(200,-100,O)/(-200,-100,100)/(-200,100,100)I(200,100,100)/

(200,-I00,100)I

/ 8 / 8/ 0 / (1800, 1000, 550) / (-100,-50, O) / (-100, 50, O) / (100, 50, O) /

(100,-50,0)I(-100,-50,300)/(-100,50,300)I(100,50,300)I(100,-50,300)/

